Recently, an abundant amount of urban vehicle trajectory data has been collected in road networks. Many studies have used machine learning algorithms to analyze patterns in vehicle trajectories to predict location sequences of individual travelers. Unlike the previous studies that used a discriminative modeling approach, this research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data. A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data and, thus, produce synthetic vehicle trajectories similar to real vehicle trajectories with limited observations. Synthetic trajectories can provide solutions to data sparsity or data privacy issues in using location data. This research proposesTrajGAIL, a generative adversarial imitation learning framework for the urban vehicle trajectory generation. In TrajGAIL, learning location sequences in observed trajectories is formulated as an imitation learning problem in a partially observable Markov decision process. The model is trained by the generative adversarial framework, which uses the reward function from the adversarial discriminator. The model is tested with both simulation and real-world datasets, and the results show that the proposed model obtained significant performance gains compared to existing models in sequence modeling.
翻译:最近,在公路网络中收集了大量城市车辆轨迹数据,许多研究利用机器学习算法分析车辆轨迹的模式,以预测个别旅行者的位置序列。与以往采用歧视性模型方法的研究不同,这项研究提出了一种基因化模型方法,以学习城市车辆轨迹数据的基本分布。城市车辆轨迹数据的基因化模型可以通过学习培训数据的基本分布来从培训数据中更好地概括起来,从而产生与实际车辆轨迹相似的合成车辆轨迹,但观测有限。合成轨迹可以提供解决方案,解决使用位置数据时的数据宽度或数据隐私问题。这项研究提出了TrajGAIL,这是城市车辆轨迹数据生成的基因化对抗模拟学习框架。在TrajGAIL中,所观察到的轨迹的学习位置序列是部分可观察的Markov决策过程中的一个模拟学习问题。模型由基因化对抗性对立框架培训,该框架使用对抗性歧视者模型的奖励功能。该模型用模拟和真实数据序列对现有数据进行对比,以模拟和模拟方式测试现有数据结果。模型将模拟与实际结果进行对比。