Modeling trajectories generated by robot joints is complex and required for high level activities like trajectory generation, clustering, and classification. Disentagled representation learning promises advances in unsupervised learning, but they have not been evaluated in robot-generated trajectories. In this paper we evaluate three disentangling VAEs ($\beta$-VAE, Decorr VAE, and a new $\beta$-Decorr VAE) on a dataset of 1M robot trajectories generated from a 3 DoF robot arm. We find that the decorrelation-based formulations perform the best in terms of disentangling metrics, trajectory quality, and correlation with ground truth latent features. We expect that these results increase the use of unsupervised learning in robot control.
翻译:模拟机器人联合体生成的轨迹非常复杂,对于轨迹生成、集群和分类等高水平活动来说是需要的。 停滞的代表性学习预示着在无人监督的学习中取得进展, 但是它们还没有在机器人生成的轨迹中被评估。 在本文中,我们评估了三个脱钩的VAEs (\beta$-VAE,Decorr VAE) 和一个新的 $\beta$-Decorr VAE ), 在一组由 3 DoF 机器人臂生成的 1M 机器人轨迹的数据集上。 我们发现, 以 3 DoF 机器人臂生成的1M 机器人轨迹的配方在脱钩度、 轨迹质量 和 与地面真相潜在特征的关联性方面表现最佳。 我们期望这些结果会增加机器人控制中使用非监控性学习的用途 。