In this paper, we study systems where each job or request can be split into a flexible number of sub-jobs up to a maximum limit. The number of sub-jobs a job is split into depends on the number of available servers found upon its arrival. All sub-jobs of a job are then processed in parallel at different servers leading to a linear speed-up of the job. We refer to such jobs as {\em adaptive multi-server jobs}. We study the problem of optimal assignment of such jobs when each server can process at most one sub-job at any given instant and there is no waiting room in the system. We assume that, upon arrival, a job can only access a randomly sampled subset of $k(n)$ servers from a total of $n$ servers, and the number of sub-jobs is determined based on the number of idle servers within the sampled subset. We analyze the steady-state performance of the system when system load varies according to $\lambda(n) =1 - \beta n^{-\alpha}$ for $\alpha \in [0,1)$, and $\beta \geq 0$. Our interest is to find how large the subset $k(n)$ should be in order to have zero blocking and maximum speed-up in the limit as $n \to \infty$. We first characterize the system's performance when the jobs have access to the full system, i.e., $k(n)=n$. In this setting, we show that the blocking probability approaches to zero at the rate $O(1/\sqrt{n})$ and the mean response time of accepted jobs approaches to its minimum achievable value at rate $O(1/n)$. We then consider the case where the jobs only have access to subset of servers, i.e., $k(n) < n$. We show that as long as $k(n)=\omega(n^\alpha)$, the same asymptotic performance can be achieved as in the case with full system access. In particular, for $k(n)=\Theta(n^\alpha \log n)$, we show that both the blocking probability and the mean response time approach to their desired limits at rate $O(n^{-(1-\alpha)/2})$.
翻译:暂无翻译