Very-high-resolution (VHR) remote sensing (RS) image change detection (CD) has been a challenging task for its very rich spatial information and sample imbalance problem. In this paper, we have proposed a hierarchical change guiding map network (HCGMNet) for change detection. The model uses hierarchical convolution operations to extract multiscale features, continuously merges multi-scale features layer by layer to improve the expression of global and local information, and guides the model to gradually refine edge features and comprehensive performance by a change guide module (CGM), which is a self-attention with changing guide map. Extensive experiments on two CD datasets show that the proposed HCGMNet architecture achieves better CD performance than existing state-of-the-art (SOTA) CD methods.
翻译:甚高分辨率(VHR)遥感图像变化探测(CD)对于其非常丰富的空间信息和抽样不平衡问题是一项具有挑战性的任务,在本文件中,我们提出了用于变化探测的等级变化指导地图网络(HCGMNet)建议。模型使用分层变换操作来提取多级特征,不断将多尺度的特征层逐层合并以改善全球和地方信息的表达方式,并指导模型通过一个变化指南模块(CGM)逐步完善边缘特征和全面性能,该模块对变化指南地图是自知自明的。对两个CDCD数据集的广泛实验表明,拟议的HCGMNet结构比现有最先进的CD(SOTA)方法取得更好的CD性能。