This paper reconsiders end-to-end learning approaches to the Optimal Power Flow (OPF). Existing methods, which learn the input/output mapping of the OPF, suffer from scalability issues due to the high dimensionality of the output space. This paper first shows that the space of optimal solutions can be significantly compressed using principal component analysis (PCA). It then proposes Compact Learning, a new method that learns in a subspace of the principal components before translating the vectors into the original output space. This compression reduces the number of trainable parameters substantially, improving scalability and effectiveness. Compact Learning is evaluated on a variety of test cases from the PGLib with up to 30,000 buses. The paper also shows that the output of Compact Learning can be used to warm-start an exact AC solver to restore feasibility, while bringing significant speed-ups.
翻译:本文对最优功率流(OPF)的端到端学习方法进行重新考虑。现有方法学习OPF的输入/输出映射由于输出空间的高维性而存在可扩展性问题。本文首先展示了用主成分分析(PCA)可以显著压缩最优解空间。然后,提出Compact Learning,一种新的方法,它在主成分子空间内进行学习,然后将向量转换回原始输出空间。此压缩减少了可训练参数的数量,提高了可扩展性和效率。Compact Learning在PGLib的各种测试案例上进行评估,最高可达30,000个母线。本文还展示了Compact Learning的输出可以用来启动精确的AC求解器以恢复可行性,并带来巨大速度提升。