In this paper, we investigated whether we can 1) detect participants with ataxia-specific gait characteristics (risk-prediction), and 2) assess severity of ataxia from gait (severity-assessment) using computer vision. We created a dataset of 155 videos from 89 participants, 24 controls and 65 diagnosed with (or are pre-manifest) spinocerebellar ataxias (SCAs), performing the gait task of the Scale for the Assessment and Rating of Ataxia (SARA) from 11 medical sites located in 8 different states across the United States. We develop a computer vision pipeline to detect, track, and separate out the participants from their surroundings and construct several features from their body pose coordinates to capture gait characteristics like step width, step length, swing, stability, speed, etc. Our risk-prediction model achieves 83.06% accuracy and an 80.23% F1 score. Similarly, our severity-assessment model achieves a mean absolute error (MAE) score of 0.6225 and a Pearson's correlation coefficient score of 0.7268. Our models still performed competitively when evaluated on data from sites not used during training. Furthermore, through feature importance analysis, we found that our models associate wider steps, decreased walking speed, and increased instability with greater ataxia severity, which is consistent with previously established clinical knowledge. Our models create possibilities for remote ataxia assessment in non-clinical settings in the future, which could significantly improve accessibility of ataxia care. Furthermore, our underlying dataset was assembled from a geographically diverse cohort, highlighting its potential to further increase equity. The code used in this study is open to the public, and the anonymized body pose landmark dataset is also available upon request.
翻译:在本文中,我们调查了我们是否能够(一) 检测来自美国8个不同州11个特定品格特征(风险防范)的参与者,以及2(二) 利用计算机视野评估从步态(数量评估)中检测出一个从步态(数量评估)到步态(数量评估)的严重程度。我们创建了一个由89个参与者、24个控制和65个被诊断为(或为“完成前”)脊椎型(SACA)的155个视频组成的数据集。我们完成了Ataxia(SARA)评估和评分的步态任务,来自美国8个不同州的11个医疗点。我们开发了一个计算机视野管道,以探测、跟踪和分离出参与者的地域背景,并从他们的周围建立若干特征。我们开发了一个具有竞争力的模型,以获取步态宽度、步态长度、摇摆、稳定性、速度等特征特征特征的特征,我们的风险预测模型实现了83.06%的准确度和80.23%的F1分数。同样,我们快速评估模型的绝对误差(MAE) 得0.6225分,而Pearson的相比得分0.268。在评估中,我们的模型仍然在评估中进行了有竞争力评估。在评估中进行有竞争力评估,在评估,在评估时,在评估时,在评估中进行了有竞争力评估,在评估。我们的数据比重度评估时,在评估时,我们的数据比重。我们的模型显示不力分析中,比重。我们的数据比重。在比重。我们的数据比重中发现一个不比重分析中发现一个不比重。我们的数据比重。我们的数据比重。在比重。我们的数据比重。我们的数据比重。我们的数据比重。我们的数据比重分析中发现一个不比重分析中发现一个不比比重。在比重分析中发现一个不比重, 。我们用的模型与比重分析中, 。我们用,我们用的模型比重数据比重分析中发现一个比重分析中发现一个不比重分析中发现一个比重分析中,比重分析中发现一个持续的模型与比重数据比重数据比重分析中发现一个不更低。