A multitude of explainability methods and associated fidelity performance metrics have been proposed to help better understand how modern AI systems make decisions. However, much of the current work has remained theoretical -- without much consideration for the human end-user. In particular, it is not yet known (1) how useful current explainability methods are in practice for more real-world scenarios and (2) how well associated performance metrics accurately predict how much knowledge individual explanations contribute to a human end-user trying to understand the inner-workings of the system. To fill this gap, we conducted psychophysics experiments at scale to evaluate the ability of human participants to leverage representative attribution methods for understanding the behavior of different image classifiers representing three real-world scenarios: identifying bias in an AI system, characterizing the visual strategy it uses for tasks that are too difficult for an untrained non-expert human observer as well as understanding its failure cases. Our results demonstrate that the degree to which individual attribution methods help human participants better understand an AI system varied widely across these scenarios. This suggests a critical need for the field to move past quantitative improvements of current attribution methods towards the development of complementary approaches that provide qualitatively different sources of information to human end-users.


翻译:提出了多种解释性方法和相关的忠诚性业绩衡量标准,以帮助更好地了解现代AI系统是如何作出决定的。然而,目前许多工作仍然是理论性的 -- -- 对人类终端用户没有给予多少考虑。特别是,目前还不知道:(1) 目前的解释性方法在实践中对更现实世界的情景有多大用处,(2) 相关的业绩衡量标准如何精确地预测了解个人解释如何有助于人类终端用户努力理解该系统的内部工作;为填补这一空白,我们进行了规模的心理物理学实验,以评估人类参与者利用代表性的归属方法来理解代表三种现实世界情景的不同图像分类者行为的能力:在AI系统中查明偏见,说明其用于对未受过训练的非专家人类观察员来说过于困难的任务的视觉战略,以及了解其失败案例。我们的结果表明,个人归属方法在多大程度上帮助人类参与者更好地了解一个人工系统。为了填补这一空白,我们进行了规模的心理物理学实验,以评估人类参与者利用代表性的归属方法来理解代表真实世界三种情景的不同图像分类者的行为的能力:确定在AI系统中的偏向人类终端用户提供质量上不同信息来源的补充方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Linter for Isabelle: Implementation and Evaluation
Arxiv
0+阅读 · 2022年7月21日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员