Cognitive psychology delves on understanding perception, attention, memory, language, problem-solving, decision-making, and reasoning. Large language models (LLMs) are emerging as potent tools increasingly capable of performing human-level tasks. The recent development in the form of GPT-4 and its demonstrated success in tasks complex to humans exam and complex problems has led to an increased confidence in the LLMs to become perfect instruments of intelligence. Although GPT-4 report has shown performance on some cognitive psychology tasks, a comprehensive assessment of GPT-4, via the existing well-established datasets is required. In this study, we focus on the evaluation of GPT-4's performance on a set of cognitive psychology datasets such as CommonsenseQA, SuperGLUE, MATH and HANS. In doing so, we understand how GPT-4 processes and integrates cognitive psychology with contextual information, providing insight into the underlying cognitive processes that enable its ability to generate the responses. We show that GPT-4 exhibits a high level of accuracy in cognitive psychology tasks relative to the prior state-of-the-art models. Our results strengthen the already available assessments and confidence on GPT-4's cognitive psychology abilities. It has significant potential to revolutionize the field of AI, by enabling machines to bridge the gap between human and machine reasoning.


翻译:认知心理学涉及理解感知、注意、记忆、语言、问题解决、决策和推理等领域。大型语言模型 (LLMs) 正在成为越来越强大的工具,能够完成人类级别的任务。最近的 GPT-4 发展以及它在复杂问题上的表现,进一步增强了 LLMs 成为完美智能工具的信心。虽然 GPT-4 的报告展示了其在某些认知心理学任务上的表现,但需要对 GPT-4 进行一系列的评估,以充分了解其认知心理学处理特征。在本研究中,我们将重点评估 GPT-4 在共性QA、SuperGLUE、MATH 和HANS等认知心理学数据集上的表现。在这个过程中,我们了解了GPT-4如何处理并整合认知心理学与上下文信息,揭示了支撑其生成响应的潜在认知过程。我们的结果表明,在与之前的先进模型进行比较时,GPT-4在认知心理学任务方面表现出高精度。我们的研究结果进一步加强了人们对 GPT-4 认知心理学能力的信心,它有潜力通过实现人机推理的无缝衔接来彻底颠覆AI领域。

0
下载
关闭预览

相关内容

北京时间2023年3月15日凌晨,ChatGPT开发商OpenAI 发布了发布了全新的多模态预训练大模型 GPT-4,可以更可靠、更具创造力、能处理更细节的指令,根据图片和文字提示都能生成相应内容。 具体来说来说,GPT-4 相比上一代的模型,实现了飞跃式提升:支持图像和文本输入,拥有强大的识图能力;大幅提升了文字输入限制,在ChatGPT模式下,GPT-4可以处理超过2.5万字的文本,可以处理一些更加细节的指令;回答准确性也得到了显著提高。
多模态认知计算
专知会员服务
179+阅读 · 2022年9月16日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
35+阅读 · 2020年9月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员