题目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。算力的最新发展和语言大数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本综述对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们并进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
59

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: A Survey on Transfer Learning in Natural Language Processing

摘要:

深度学习模型通常需要大量数据。 但是,这些大型数据集并非总是可以实现的。这在许多具有挑战性的NLP任务中很常见。例如,考虑使用神经机器翻译,在这种情况下,特别对于低资源语言而言,可能无法整理如此大的数据集。深度学习模型的另一个局限性是对巨大计算资源的需求。这些障碍促使研究人员质疑使用大型训练模型进行知识迁移的可能性。随着许多大型模型的出现,对迁移学习的需求正在增加。在此调查中,我们介绍了NLP领域中最新的迁移学习进展。我们还提供了分类法,用于分类文献中的不同迁移学习方法。

成为VIP会员查看完整内容
0
97

摘要

一个综合的人工智能系统不仅需要用不同的感官(如视觉和听觉)感知环境,还需要推断世界的条件(甚至因果)关系和相应的不确定性。在过去的十年里,我们看到了许多感知任务的重大进展,比如视觉对象识别和使用深度学习模型的语音识别。然而,对于更高层次的推理,具有贝叶斯特性的概率图模型仍然更加强大和灵活。近年来,贝叶斯深度学习作为一种将深度学习与贝叶斯模型紧密结合的统一的概率框架出现了。在这个总体框架中,利用深度学习对文本或图像的感知可以提高更高层次推理的性能,推理过程的反馈也可以增强文本或图像的感知。本文对贝叶斯深度学习进行了全面的介绍,并对其在推荐系统主题模型控制等方面的最新应用进行了综述。此外,我们还讨论了贝叶斯深度学习与其他相关课题如神经网络的贝叶斯处理之间的关系和区别。

介绍

在过去的十年中,深度学习在许多流行的感知任务中取得了显著的成功,包括视觉对象识别、文本理解和语音识别。这些任务对应于人工智能(AI)系统的看、读、听能力,它们无疑是人工智能有效感知环境所必不可少的。然而,要建立一个实用的、全面的人工智能系统,仅仅有感知能力是远远不够的。首先,它应该具备思维能力。

一个典型的例子是医学诊断,它远远超出了简单的感知:除了看到可见的症状(或CT上的医学图像)和听到患者的描述,医生还必须寻找所有症状之间的关系,最好推断出它们的病因。只有在那之后,医生才能给病人提供医疗建议。在这个例子中,虽然视觉和听觉的能力让医生能够从病人那里获得信息,但医生的思维能力才是关键。具体来说,这里的思维能力包括识别条件依赖、因果推理、逻辑演绎、处理不确定性等,显然超出了传统深度学习方法的能力。幸运的是,另一种机器学习范式,概率图形模型(PGM),在概率或因果推理和处理不确定性方面表现出色。问题在于,PGM在感知任务上不如深度学习模型好,而感知任务通常涉及大规模和高维信号(如图像和视频)。为了解决这个问题,将深度学习和PGM统一到一个有原则的概率框架中是一个自然的选择,在本文中我们称之为贝叶斯深度学习(BDL)。 在上面的例子中,感知任务包括感知病人的症状(例如,通过看到医学图像),而推理任务包括处理条件依赖性、因果推理、逻辑推理和不确定性。通过贝叶斯深度学习中有原则的整合,将感知任务和推理任务视为一个整体,可以相互借鉴。具体来说,能够看到医学图像有助于医生的诊断和推断。另一方面,诊断和推断反过来有助于理解医学图像。假设医生可能不确定医学图像中的黑点是什么,但如果她能够推断出症状和疾病的病因,就可以帮助她更好地判断黑点是不是肿瘤。 再以推荐系统为例。一个高精度的推荐系统需要(1)深入了解条目内容(如文档和电影中的内容),(2)仔细分析用户档案/偏好,(3)正确评价用户之间的相似度。深度学习的能力有效地处理密集的高维数据,如电影内容擅长第一子任务,而PGM专攻建模条件用户之间的依赖关系,项目和评分(参见图7为例,u, v,和R是用户潜在的向量,项目潜在的向量,和评级,分别)擅长其他两个。因此,将两者统一在一个统一的概率原则框架中,可以使我们在两个世界中都得到最好的结果。这种集成还带来了额外的好处,可以优雅地处理推荐过程中的不确定性。更重要的是,我们还可以推导出具体模型的贝叶斯处理方法,从而得到更具有鲁棒性的预测。

作为第三个例子,考虑根据从摄像机接收到的实时视频流来控制一个复杂的动态系统。该问题可以转化为迭代执行两项任务:对原始图像的感知和基于动态模型的控制。处理原始图像的感知任务可以通过深度学习来处理,而控制任务通常需要更复杂的模型,如隐马尔科夫模型和卡尔曼滤波器。由控制模型选择的动作可以依次影响接收的视频流,从而完成反馈回路。为了在感知任务和控制任务之间实现有效的迭代过程,我们需要信息在它们之间来回流动。感知组件将是控制组件估计其状态的基础,而带有动态模型的控制组件将能够预测未来的轨迹(图像)。因此,贝叶斯深度学习是解决这一问题的合适选择。值得注意的是,与推荐系统的例子类似,来自原始图像的噪声和控制过程中的不确定性都可以在这样的概率框架下自然地处理。 以上例子说明了BDL作为一种统一深度学习和PGM的原则方式的主要优势:感知任务与推理任务之间的信息交换、对高维数据的条件依赖以及对不确定性的有效建模。关于不确定性,值得注意的是,当BDL应用于复杂任务时,需要考虑三种参数不确定性:

  1. 神经网络参数的不确定性
  2. 指定任务参数的不确定性
  3. 感知组件和指定任务组件之间信息交换的不确定性

通过使用分布代替点估计来表示未知参数,BDL提供了一个很有前途的框架,以统一的方式处理这三种不确定性。值得注意的是,第三种不确定性只能在BDL这样的统一框架下处理;分别训练感知部分和任务特定部分相当于假设它们之间交换信息时没有不确定性。注意,神经网络通常是过参数化的,因此在有效处理如此大的参数空间中的不确定性时提出了额外的挑战。另一方面,图形模型往往更简洁,参数空间更小,提供了更好的可解释性。

除了上述优点之外,BDL内建的隐式正则化还带来了另一个好处。通过在隐藏单元、定义神经网络的参数或指定条件依赖性的模型参数上施加先验,BDL可以在一定程度上避免过拟合,尤其是在数据不足的情况下。通常,BDL模型由两个组件组成,一个是感知组件,它是某种类型神经网络的贝叶斯公式,另一个是任务特定组件,使用PGM描述不同隐藏或观察变量之间的关系。正则化对它们都很重要。神经网络通常过度参数化,因此需要适当地正则化。正则化技术如权值衰减和丢失被证明是有效地改善神经网络的性能,他们都有贝叶斯解释。在任务特定组件方面,专家知识或先验信息作为一种正规化,可以在数据缺乏时通过施加先验来指导模型。 在将BDL应用于实际任务时,也存在一些挑战。(1)首先,设计一个具有合理时间复杂度的高效的神经网络贝叶斯公式并非易事。这一行是由[42,72,80]开创的,但是由于缺乏可伸缩性,它没有被广泛采用。幸运的是,这个方向的一些最新进展似乎为贝叶斯神经网络的实际应用提供了一些启示。(2)第二个挑战是如何确保感知组件和任务特定组件之间有效的信息交换。理想情况下,一阶和二阶信息(例如,平均值和方差)应该能够在两个组件之间来回流动。一种自然的方法是将感知组件表示为PGM,并将其与特定任务的PGM无缝连接,如[24,118,121]中所做的那样。 本综述提供了对BDL的全面概述,以及各种应用程序的具体模型。综述的其余部分组织如下:在第2节中,我们将回顾一些基本的深度学习模型。第3节介绍PGM的主要概念和技术。这两部分作为BDL的基础,下一节第4节将演示统一BDL框架的基本原理,并详细说明实现其感知组件和特定于任务的组件的各种选择。第5节回顾了应用于不同领域的BDL模型,如推荐系统、主题模型和控制,分别展示了BDL在监督学习、非监督学习和一般表示学习中的工作方式。第6部分讨论了未来的研究问题,并对全文进行了总结。

结论和未来工作

BDL致力于将PGM和NN的优点有机地整合在一个原则概率框架中。在这项综述中,我们确定了这种趋势,并回顾了最近的工作。BDL模型由感知组件和任务特定组件组成;因此,我们分别描述了过去几年开发的两个组件的不同实例,并详细讨论了不同的变体。为了学习BDL中的参数,人们提出了从块坐标下降、贝叶斯条件密度滤波、随机梯度恒温器到随机梯度变分贝叶斯等多种类型的算法。 BDL从PGM的成功和最近在深度学习方面有前景的进展中获得了灵感和人气。由于许多现实世界的任务既涉及高维信号(如图像和视频)的有效感知,又涉及随机变量的概率推理,因此BDL成为利用神经网络的感知能力和PGM的(条件和因果)推理能力的自然选择。在过去的几年中,BDL在推荐系统、主题模型、随机最优控制、计算机视觉、自然语言处理、医疗保健等各个领域都有成功的应用。在未来,我们不仅可以对现有的应用进行更深入的研究,还可以对更复杂的任务进行探索。此外,最近在高效BNN (BDL的感知组件)方面的进展也为进一步提高BDL的可扩展性奠定了基础。

成为VIP会员查看完整内容
0
147

本文综述了元学习在图像分类、自然语言处理和机器人技术等领域的应用。与深度学习不同,元学习使用较少的样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类: 黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
0
205

主题: Modern Deep Learning Techniques Applied to Natural Language Processing

简要介绍: 该文章概述了基于深度学习的自然语言处理(NLP)的最新趋势。 它涵盖了深度学习模型(例如递归神经网络(RNN),卷积神经网络(CNN)和强化学习)背后的理论描述和实现细节,用于解决各种NLP任务和应用。 概述还包含NLP任务(例如机器翻译,问题解答和对话系统)的最新结果摘要。

成为VIP会员查看完整内容
0
37

【简介】自然语言处理(NLP)能够帮助智能型机器更好地理解人类的语言,实现基于语言的人机交流。目前随着计算能力的发展和大量语言数据的出现,推动了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域取得了显著的进步,数据驱动策略的应用已经非常的普遍。本综述对NLP领域中所应用的深度学习进行了分类和讨论。它涵盖了NLP的核心任务和应用领域,并对深度学习方法如何推进这些领域的发展进行了细致的描述。最后我们进一步分析和比较了不同的方法和目前最先进的模型。

原文连接:https://arxiv.org/abs/2003.01200

介绍

自然语言处理(NLP)是计算机科学的一个分支,能够为自然语言和计算机之间提高沟通的桥梁。它帮助机器理解、处理和分析人类语言。NLP通过深入地理解数据的上下文,使得数据变得更有意义,这反过来又促进了文本分析和数据挖掘。NLP通过人类的通信结构和通信模式来实现这一点。这篇综述涵盖了深度学习在NLP领域中所扮演的新角色以及各种应用。我们的研究主要集中在架构上,很少讨论具体的应用程序。另一方面,本文描述了将深度学习应用于NLP问题中时所面临的挑战、机遇以及效果评估方式。

章节目录

section 2: 在理论层面介绍了NLP和人工智能,并将深度学习视为解决现实问题的一种方法。

section 3:讨论理解NLP所必需的基本概念,包括各种表示法、模型框架和机器学习中的示例性问题。

section 4:总结了应用在NLP领域中的基准数据集。

section 5:重点介绍一些已经被证明在NLP任务中有显著效果的深度学习方法。

section 6:进行总结,同时解决了一些开放的问题和有希望改善的领域。

成为VIP会员查看完整内容
0
78

自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。计算能力的最新发展和大量语言数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本调查对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
158

简介: 人们在阅读文章时,可以识别关键思想,作出总结,并建立文章中的联系以及对其他需要理解的内容等方面都做得很出色。深度学习的最新进展使计算机系统可以实现类似的功能。用于自然语言处理的深度学习可教您将深度学习方法应用于自然语言处理(NLP),以有效地解释和使用文章。在这本书中,NLP专家Stephan Raaijmakers提炼了他对这个快速发展的领域中最新技术发展的研究。通过详细的说明和丰富的代码示例,您将探索最具挑战性的NLP问题,并学习如何通过深度学习解决它们!

自然语言处理是教计算机解释和处理人类语言的科学。最近,随着深度学习的应用,NLP技术已跃升至令人兴奋的新水平。这些突破包括模式识别,从上下文中进行推断以及确定情感语调,从根本上改善了现代日常便利性,例如网络搜索,以及与语音助手的交互。他们也在改变商业世界!

目录:

  • NLP和深度学习概述
  • 文本表示
  • 词嵌入
  • 文本相似性模型
  • 序列NLP
  • 语义角色标签
  • 基于深度记忆的NLP
  • 语言结构
  • 深度NLP的超参数

1深度NLP学习

  • 1.1概述
  • 1.2面向NLP的机器学习方法
  • 1.2.1感知机
  • 1.2.2 支持向量机
  • 1.2.3基于记忆的学习
  • 1.3深度学习
  • 1.4语言的向量表示
  • 1.4.1表示向量
  • 1.4.2运算向量
  • 1.5工具
  • 1.5.1哈希技巧
  • 1.5.2向量归一化
  • 1.6总结

2 深度学习和语言:基础知识

  • 2.1深度学习的基本构架
  • 2.1.1多层感知机
  • 2.1.2基本运算符:空间和时间
  • 2.2深度学习和NLP
  • 2.3总结

3文字嵌入

  • 3.1嵌入
  • 3.1.1手工嵌入
  • 3.1.2学习嵌入
  • 3.2word2vec
  • 3.3doc2vec
  • 3.4总结

4文字相似度

  • 4.1问题
  • 4.2数据
  • 4.2.1作者归属和验证数据
  • 4.3数据表示
  • 4.3.1分割文件
  • 4.3.2字的信息
  • 4.3.3子字集信息
  • 4.4相似度测量模型
  • 4.5.1多层感知机
  • 4.5.2CNN
  • 4.6总结

5序列NLP和记忆

  • 5.1记忆和语言
  • 5.1.1问答
  • 5.2数据和数据处理
  • 5.3序列模型的问答
  • 5.3.1用于问答的RNN
  • 5.3.2用于问答的LSTM
  • 5.3.3问答的端到端存储网络
  • 5.4总结

6NLP的6种情景记忆

  • 6.1序列NLP的记忆网络
  • 6.2数据与数据处理
  • 6.2.1PP附件数据
  • 6.2.2荷兰小数据
  • 6.2.3西班牙语词性数据
  • 6.3监督存储网络
  • 6.3.1PP连接
  • 6.3.2荷兰小商品
  • 6.3.3西班牙语词性标记
  • 6.4半监督存储网络
  • 6.5半监督存储网络:实验和结果
  • 6.6小结
  • 6.7代码和数据

7注意力机制

  • 7.1神经注意力机制
  • 7.2数据
  • 7.3静态注意力机制:MLP
  • 7.4暂态注意力机制:LSTM
  • 7.4.1实验
  • 7.5小结

8多任务学习

  • 8.1简介
  • 8.2数据
  • 8.3.1数据处理
  • 8.3.2硬参数共享
  • 8.3.3软参数共享
  • 8.3.4混合参数共享
  • 8.4主题分类
  • 8.4.1数据处理
  • 8.4.2硬参数共享
  • 8.4.3软参数共享
  • 8.4.4混合参数共享
  • 8.5词性和命名实体识别数据
  • 8.5.1数据处理
  • 8.5.2硬参数共享
  • 8.5.3软参数共享
  • 8.5.4混合参数共享
  • 8.6结论

附录

附录A:NLP

附录B:矩阵代数

附录C:超参数估计和分类器性能评估

成为VIP会员查看完整内容
0
43

邓力博士及刘洋博士等人合著的 Deep Learning in Natural Language Processing 一书系统介绍深度学习在 NLP 常见问题中的应用,而且是目前对此方面研究最新、最全面的综述。 本书还对 NLP 未来发展的研究方向进行了探讨,包括神经符号整合框架、基于记忆的模型、先验知识融合以及深度学习范式(如无监督学习、生成式学习、多模学习、多任务学习和元学习等)。

成为VIP会员查看完整内容
Deep+Learning+in+Natural+Language+Processing.pdf
0
110

在过去的几年里,自然语言处理领域由于深度学习模型的大量使用而得到了发展。这份综述提供了一个NLP领域的简要介绍和一个快速的深度学习架构和方法的概述。然后,筛选了大量最近的研究论文,并总结了大量相关的贡献。NLP研究领域除了计算语言学的一些应用外,还包括几个核心的语言处理问题。然后讨论了目前的技术水平,并对该领域今后的研究提出了建议。

成为VIP会员查看完整内容
0
161
小贴士
相关VIP内容
相关资讯
基于深度学习的NLP 32页最新进展综述,190篇参考文献
人工智能学家
22+阅读 · 2018年12月4日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
6+阅读 · 2018年11月6日
深度学习(deep learning)发展史
机器学习算法与Python学习
7+阅读 · 2018年3月19日
最全面的百度NLP自然语言处理技术解析
InfoQ
7+阅读 · 2017年11月12日
Natural 自然语言处理(NLP)「全解析」
人工智能学家
13+阅读 · 2017年9月23日
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
46+阅读 · 2020年7月2日
Xipeng Qiu,Tianxiang Sun,Yige Xu,Yunfan Shao,Ning Dai,Xuanjing Huang
91+阅读 · 2020年3月18日
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar,Bei Peng,Matteo Leonetti,Jivko Sinapov,Matthew E. Taylor,Peter Stone
13+阅读 · 2020年3月10日
A Survey of the Usages of Deep Learning in Natural Language Processing
Daniel W. Otter,Julian R. Medina,Jugal K. Kalita
80+阅读 · 2019年9月11日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
10+阅读 · 2019年1月16日
Marc Everett Johnson
3+阅读 · 2018年12月18日
Ziwei Zhang,Peng Cui,Wenwu Zhu
40+阅读 · 2018年12月11日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
9+阅读 · 2018年9月6日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Top