In many self-organising systems the ability to extract necessary resources from the external environment is essential to the system's growth and survival. Examples include the extraction of sunlight and nutrients in organic plants, of monetary income in business organisations and of mobile robots in swarm intelligence actions. When operating within competitive, ever-changing environments, such systems must distribute their internal assets wisely so as to improve and adapt their ability to extract available resources. As the system size increases, the asset-distribution process often gets organised around a multi-scale control topology. This topology may be static (fixed) or dynamic (enabling growth and structural adaptation) depending on the system's internal constraints and adaptive mechanisms. In this paper, we expand on a plant-inspired asset-distribution model and introduce a more general multi-scale model applicable across a wider range of natural and artificial system domains. We study the impact that the topology of the multi-scale control process has upon the system's ability to self-adapt asset distribution when resource availability changes within the environment. Results show how different topological characteristics and different competition levels between system branches impact overall system profitability, adaptation delays and disturbances when environmental changes occur. These findings provide a basis for system designers to select the most suitable topology and configuration for their particular application and execution environment.


翻译:在许多自我组织系统中,从外部环境中提取必要资源的能力对于系统的增长和生存至关重要,例如有机植物中的阳光和养分提取、商业组织中的货币收入和流动机器人在群温智能行动中的吸收、商业组织中的货币收入和流动机器人的提取。当在竞争激烈、不断变化的环境中运作时,这些系统必须明智地分配其内部资产,以便提高和调整其获取现有资源的能力。随着系统规模的扩大,资产分配过程往往围绕一个多尺度的控制表层进行。这种表层学可能是静止的(固定的)或动态的(扶持增长和结构适应的),取决于系统的内部制约和适应机制。在本文件中,我们扩展了一种受植物启发的资产分配模式,并引入了一种更为普遍的多尺度模型,适用于更广泛的自然和人工系统领域。我们研究了多尺度控制过程的表面学对系统在环境内资源可得性变化时进行自我调适资产分配的能力的影响。结果显示,系统各部门之间不同的表层特征和不同的竞争水平如何影响整个系统的盈利能力、适应性拖延和适应性。在环境变化时,这些结果为最合适的环境变化提供了一种选择环境配置基础。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员