The Stackelberg game model, where a leader commits to a strategy and the follower best responds, has found widespread application, particularly to security problems. In the security setting, the goal is for the leader to compute an optimal strategy to commit to, in order to protect some asset. In many of these applications, the parameters of the follower utility model are not known with certainty. Distributionally-robust optimization addresses this issue by allowing a distribution over possible model parameters, where this distribution comes from a set of possible distributions. The goal is to maximize the expected utility with respect to the worst-case distribution. We initiate the study of distributionally-robust models for computing the optimal strategy to commit to. We consider the case of normal-form games with uncertainty about the follower utility model. Our main theoretical result is to show that a distributionally-robust Stackelberg equilibrium always exists across a wide array of uncertainty models. For the case of a finite set of possible follower utility functions we present two algorithms to compute a distributionally-robust strong Stackelberg equilibrium (DRSSE) using mathematical programs. Next, in the general case where there is an infinite number of possible follower utility functions and the uncertainty is represented by a Wasserstein ball around a finitely-supported nominal distribution, we give an incremental mixed-integer-programming-based algorithm for computing the optimal distributionally-robust strategy. Experiments substantiate the tractability of our algorithm on a classical Stackelberg game, showing that our approach scales to medium-sized games.
翻译:Stackelberg 游戏模式, 领导者承诺制定策略, 并且追随者最佳响应, 已经找到广泛的应用, 特别是安全问题。 在安全环境下, 目标是由领导者计算一个最佳策略, 以便承诺, 以保护某些资产。 在其中的许多应用程序中, 跟踪者实用模型的参数是不确定的。 分布式的机器人优化通过允许分配可能的模型参数来解决这个问题, 可能的分配来自一系列可能的分布。 目标是最大限度地利用最坏情况分布的预期用途。 我们开始研究分配式机器人模型, 以计算承诺的最佳战略。 我们考虑的是正常形式游戏的情况, 并有关于后续工具模式的不确定性。 我们的主要理论结果是显示, 分布式- 燃烧式Stacelberg 的平衡总是存在于一系列广泛的不确定性模型中。 对于一个基于可能分配式的直线级实用功能, 我们提出了两种最佳的算法, 以使用数学程序来计算最强的Stackelberg 平衡( DRSESE) 。 我们考虑的是正常形式游戏的游戏模式, 将多少级的计算成一个稳定的 。