In 1959, Erd\H{o}s and Gallai proved that every graph G with average vertex degree ad(G)\geq 2 contains a cycle of length at least ad(G). We provide an algorithm that for k\geq 0 in time 2^{O(k)} n^{O(1)} decides whether a 2-connected n-vertex graph G contains a cycle of length at least ad(G)+k. This resolves an open problem explicitly mentioned in several papers. The main ingredients of our algorithm are new graph-theoretical results interesting on their own.
翻译:1959年,Erd\H{o}s 和 Gallai 证明,每个具有平均顶端度 ad(G)\geq 2 的图形G至少包含一个长度周期 ad(G)\ geq 2。 我们提供了一个算法,用于 k\geq 0 的时间 2 ⁇ O(k)} n ⁇ O(1)} 来决定一个连接了 2 的 n- verdex 图形G 是否包含至少 ad(G)+k 的长度周期。 这解决了几个论文中明确提到的一个未解决的问题。 我们算法的主要内容是新的图形理论结果, 本身很有意思 。