Human anatomy, morphology, and associated diseases can be studied using medical imaging data. However, access to medical imaging data is restricted by governance and privacy concerns, data ownership, and the cost of acquisition, thus limiting our ability to understand the human body. A possible solution to this issue is the creation of a model able to learn and then generate synthetic images of the human body conditioned on specific characteristics of relevance (e.g., age, sex, and disease status). Deep generative models, in the form of neural networks, have been recently used to create synthetic 2D images of natural scenes. Still, the ability to produce high-resolution 3D volumetric imaging data with correct anatomical morphology has been hampered by data scarcity and algorithmic and computational limitations. This work proposes a generative model that can be scaled to produce anatomically correct, high-resolution, and realistic images of the human brain, with the necessary quality to allow further downstream analyses. The ability to generate a potentially unlimited amount of data not only enables large-scale studies of human anatomy and pathology without jeopardizing patient privacy, but also significantly advances research in the field of anomaly detection, modality synthesis, learning under limited data, and fair and ethical AI. Code and trained models are available at: https://github.com/AmigoLab/SynthAnatomy.
翻译:人体解剖、形态学和相关疾病可以使用医学成像数据进行研究,然而,获得医学成象数据的途径受到治理和隐私关切、数据所有权和获取成本的限制,从而限制了我们了解人体的能力。 这一问题的一个可能解决办法是创建一种模型,能够学习人体身体的合成图像,然后根据具体相关特征(如年龄、性别和疾病状况)制作合成图像,其条件是相关的具体特征(如年龄、性别和疾病状况); 以神经网络为形式的深层基因化模型最近被用来制作合成的自然场景2D图像。 然而,生成高分解 3D体积成像数据的能力仍然受到数据稀缺以及算法和计算限制的制约。 这项工作提出的基因化模型可以扩大,产生解剖正确、高分辨率和现实的人类大脑图像,并具备必要的质量,以便进一步进行下游分析。 生成可能无限数量的数据的能力不仅能够进行大规模的人体解剖和病理学研究,同时又不损害病人的隐私,而且还大大地阻碍了生成3D体积成像学数据的能力。 数据缺乏数据、算法和计算方法限制了A/AI-L系统学领域现有的伦理学研究。