Vine copulas can efficiently model multivariate probability distributions. This paper focuses on a more thorough understanding of their structures, since in the literature, vine copula representations are often ambiguous. The graph representations include the original, cherry and chordal graph sequence structures, which we show equivalence between. Importantly we also show a new result, namely that when a perfect elimination ordering of a vine structure is given, then it can always be uniquely represented with a matrix. O. M. N\'apoles has shown a way to represent vines in a matrix, and we algorithmify this previous approach, while also showing a new method for constructing such a matrix, through cherry tree sequences. We also calculate the runtime of these algorithms. Lastly, we prove that these two matrix-building algorithms are equivalent if the same perfect elimination ordering is being used.
翻译:葡萄干可高效地模拟多变概率分布。 本文侧重于更透彻地了解它们的结构, 因为文献中葡萄干表达方式往往含糊不清。 图形表达方式包括原始结构、 樱桃结构、 和圆柱形图序列结构, 我们显示了这些结构之间的等同性。 我们还展示了一个新的结果, 即当给出了葡萄结构的完全消除顺序时, 它总是可以用矩阵来代表独有的。 O. M. N\' apoles 已经展示了一种在矩阵中代表葡萄树的方法, 我们将先前的方法进行算法化, 同时通过樱桃树序列来显示构建这种矩阵的新方法。 我们还计算了这些算法的运行时间。 最后, 我们证明, 如果使用相同的完全消除顺序, 这两种矩阵构建算法是等同的。</s>