De-bordering is the task of proving that a border complexity measure is bounded from below, by a non-border complexity measure. This task is at the heart of understanding the difference between Valiant's determinant vs permanent conjecture, and Mulmuley and Sohoni's Geometric Complexity Theory (GCT) approach to settle the P \neq NP conjecture. Currently, very few de-bordering results are known. In this work, we study the question of de-bordering the border Waring rank of polynomials. Waring and border Waring rank are very well studied measures, in the context of invariant theory, algebraic geometry and matrix multiplication algorithms. For the first time, we obtain a Waring rank upper bound that is exponential in the border Waring rank and only *linear* in the degree. All previous results were known to be exponential in the degree. According to Kumar's recent surprising result (ToCT'20), a small border Waring rank implies that the polynomial can be approximated as a sum of a constant and a small product of linear polynomials. We prove the converse of Kumar's result, and in this way we de-border Kumar's complexity, and obtain a new formulation of border Waring rank, up to a factor of the degree. We phrase this new formulation as the orbit closure problem of the product-plus-power polynomial, and we successfully de-border this orbit closure. We fully implement the GCT approach against the power sum, and we generalize the ideas of Ikenmeyer-Kandasamy (STOC'20) to this new orbit closure. In this way, we obtain new multiplicity obstructions that are constructed from just the symmetries of the points and representation theoretic branching rules, rather than explicit multilinear computations. Furthermore, we realize that the generalization of our converse of Kumar's theorem to square matrices gives a homogeneous formulation of Ben-Or and Cleve (SICOMP'92). This results ...


翻译:边界消解是证明下界的一个任务,其下界是非边界复杂度的一个度量。这项任务是理解 Valiant 的行列式与永久假设以及 Mulmuley 和 Sohoni 的复杂几何理论 (GCT) 方法来解决 P≠NP 假设的关键。目前,已知的边界消解结果非常少。在这项工作中,我们研究了证明边界 Waring 秩的下界的问题。Waring 和边界 Waring 秩是非常受研究的度量,在不变理论、代数几何和矩阵乘法算法的上下文中。我们首次获得了一个 Waring 秩的上界,其对于边界 Waring 秩是指数级的,而对于度数仅是线性的。先前的所有结果都已知道度数是指数级的。根据 Kumar 近期令人惊讶的结果 (ToCT'20),一个小的边界 Waring 秩意味着该多项式可以近似为常数和一小个线性多项式的乘积之和。我们证明了 Kumar 定理的逆反命题,并以此消解了 Kumar 的复杂度,并获得了一个新的 Waring 秩边界(略带度数因式)。我们将这个新的表述称为乘积加幂多项式的轨道封闭问题,并成功地消解了这个轨道封闭。我们完全实现了对幂和的 GCT 方法,同时我们将 Ikenmeyer-Kandasamy (STOC'20) 的想法推广到这个新的轨道封闭。这样,我们就获得了新的多重性障碍,这些多重性障碍只是由点的对称性和表示论分支规则构造而成,而不需要显式的多线性计算。此外,我们意识到,将 Kumar 定理的推广到方阵,即给出了 Ben-Or 和 Cleve (SICOMP'92) 的一个齐次表述。该结果 ...

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
一文带你浏览Graph Transformers
图与推荐
1+阅读 · 2022年7月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关资讯
一文带你浏览Graph Transformers
图与推荐
1+阅读 · 2022年7月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员