We present $\mathcal{CL}_1$-$\mathcal{GP}$, a control framework that enables safe simultaneous learning and control for systems subject to uncertainties. The two main constituents are contraction theory-based $\mathcal{L}_1$ ($\mathcal{CL}_1$) control and Bayesian learning in the form of Gaussian process (GP) regression. The $\mathcal{CL}_1$ controller ensures that control objectives are met while providing safety certificates. Furthermore, $\mathcal{CL}_1$-$\mathcal{GP}$ incorporates any available data into a GP model of uncertainties, which improves performance and enables the motion planner to achieve optimality safely. This way, the safe operation of the system is always guaranteed, even during the learning transients. We provide a few illustrative examples for the safe learning and control of planar quadrotor systems in a variety of environments.
翻译:我们提出了 $mathcal{CL%1$-$mathcal{gal{GP} $,这是一个控制框架,使受不确定性影响的系统能够安全地同时学习和控制。两个主要成分是收缩理论的$mathcal{L ⁇ 1$(mathcal{CL{CL{1$1$)控制和巴伊西亚以高山进程回归(GP)形式的学习。$mathcal{CL{CL{1$1美元控制器确保控制目标在提供安全证书的同时得以实现。此外,$macal{CL%1$-$gathcal{GP}$将任何现有数据纳入GP不确定性模型,该模型可以提高性能并使运动规划者能够安全地实现最佳性。这样,系统的安全运行就一直得到保证,即使在学习中转。我们为在各种环境中安全学习平面的测矿系统的安全学习和控制提供了几个示例。