In recent years, the literature on Bayesian high-dimensional variable selection has rapidly grown. It is increasingly important to understand whether these Bayesian methods can consistently estimate the model parameters. To this end, shrinkage priors are useful for identifying relevant signals in high-dimensional data. For multivariate linear regression models with Gaussian response variables, Bai and Ghosh (2018) proposed a multivariate Bayesian model with shrinkage priors (MBSP) for estimation and variable selection in high-dimensional settings. However, the proofs of posterior consistency for the MBSP method (Theorems 3 and 4 of Bai and Ghosh (2018) were incorrect. In this paper, we provide a corrected proof of Theorems 3 and 4 of Bai and Ghosh (2018). We leverage these new proofs to extend the MBSP model to multivariate generalized linear models (GLMs). Under our proposed model (MBSP-GLM), multiple responses belonging to the exponential family are simultaneously modeled and mixed-type responses are allowed. We show that the MBSP-GLM model achieves strong posterior consistency when $p$ grows at a subexponential rate with $n$. Furthermore, we quantify the posterior contraction rate at which the posterior shrinks around the true regression coefficients and allow the dimension of the responses $q$ to grow as $n$ grows. Thus, we strengthen the previous results on posterior consistency, which did not provide rate results. This greatly expands the scope of the MBSP model to include response variables of many data types, including binary and count data. To the best of our knowledge, this is the first posterior contraction result for multivariate Bayesian GLMs.


翻译:近年来,巴耶斯高维变量选择的文献迅速增长,但越来越重要的是要了解贝耶斯高维变量选择的文献是否能够一致估算模型参数。 为此, 缩缩前端有助于识别高维数据中的相关信号。 对于包含高萨响应变量的多变量线性回归模型, 贝和戈什( 2018年) 提议了一个多变量贝叶西亚模型, 用于在高维环境中进行估算和变量选择。 然而, 对MBSP方法( Bai 和 Ghosh 的3和 4 的理论和 4 ( 2018年) 的后端变量一致性证明是错误的。 我们用这些新证据将MBSP模型扩展为多变量通用线性模型( GLMS ) 进行估算和多维度选择。 但是根据我们提议的模型( MBSP- GLM 3 和 Ghosh ( 2018 2018 年) 的代谢后端变量定义是错的。 我们显示MBSP- GLM 模型在高基 3 3 和 Ghosh 和 Ghosh ( 2018 ) ) 数据递增增后 的 数据率中, 将数据推增缩增后端数据。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Warped Dynamic Linear Models for Time Series of Counts
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员