This paper proposes an inverse optimal control method which enables a robot to incrementally learn a control objective function from a collection of trajectory segments. By saying incrementally, it means that the collection of trajectory segments is enlarged because additional segments are provided as time evolves. The unknown objective function is parameterized as a weighted sum of features with unknown weights. Each trajectory segment is a small snippet of optimal trajectory. The proposed method shows that each trajectory segment, if informative, can pose a linear constraint to the unknown weights, thus, the objective function can be learned by incrementally incorporating all informative segments. Effectiveness of the method is shown on a simulated 2-link robot arm and a 6-DoF maneuvering quadrotor system, in each of which only small demonstration segments are available.


翻译:本文件提出了一种反向最佳控制方法,使机器人能够从轨迹段的集合中逐步学习控制目标函数。 递增说, 这意味着轨迹段的收集会随着时间的演变而扩大, 因为随时间的演变而增加部分。 未知目标函数的参数化是具有未知重量的特征的加权总和。 每个轨迹段都是最佳轨迹的小片块。 拟议方法显示,每个轨迹段,如果信息丰富,都可以对未知的重量造成线性限制, 因此, 可以通过渐进地吸收所有信息部分来学习客观功能。 方法的效力在模拟的2连环机器人臂和6多氟操纵的二次钻探系统中显示, 每个系统只有小块的演示区。

0
下载
关闭预览

相关内容

我们给定x,函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示拟合的好坏,就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
84+阅读 · 2022年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员