Monitoring the evolution of the Covid19 pandemic constitutes a critical step in sanitary policy design. Yet, the assessment of the pandemic intensity within the pandemic period remains a challenging task because of the limited quality of data made available by public health authorities (missing data, outliers and pseudoseasonalities, notably), that calls for cumbersome and ad-hoc preprocessing (denoising) prior to estimation. Recently, the estimation of the reproduction number, a measure of the pandemic intensity, was formulated as an inverse problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that formulation lacks robustness against the limited quality of the Covid19 data and confidence assessment. The present work aims to address both limitations: First, it discusses solutions to produce a robust assessment of the pandemic intensity by accounting for the low quality of the data directly within the inverse problem formulation. Second, exploiting a Bayesian interpretation of the inverse problem formulation, it devises a Monte Carlo sampling strategy, tailored to a nonsmooth log-concave a posteriori distribution, to produce relevant credibility intervalbased estimates for the Covid19 reproduction number. Clinical relevance Applied to daily counts of new infections made publicly available by the Health Authorities for around 200 countries, the proposed procedures permit robust assessments of the time evolution of the Covid19 pandemic intensity, updated automatically and on a daily basis.
翻译:监测Covid19大流行的演变是卫生政策设计中的一个关键步骤,然而,由于公共卫生当局提供的数据质量有限(缺乏数据、离子体和假季节性数据,特别是),因此需要在估算前进行繁琐和临时的预处理(缺水),因此评估该流行病在大流行病期间的密集程度仍然是一项艰巨的任务;最近,估算复制数字,这是衡量该大流行病强度的一个尺度,是一个逆向问题,结合了数据模型的忠诚和时间规律性限制,通过非moth convex最接近的最小化方法来解决。虽然很有希望,但公共卫生当局提供的数据质量有限(缺乏数据、离子体和假季节性季节性数据评估),缺乏稳健性。目前的工作旨在解决这两个限制:第一,讨论通过直接在反向问题的编制过程中对低质量进行核算,对大流行病密集程度进行有力评估的办法。第二,利用对反问题的拟订的巴耶斯解释,制定蒙特卡洛取样战略,针对非偏向的逻辑-conexpex print press press proal realalimal realalalalalimalalalal imation 19 laphalalal rovial rovial rovidudududududududuting the recal brobal rodududududududu, se se labildal brobildaliz line robildal im robildal imational rovialtial robal rotial rodu。