This work is concerned with fractional Gaussian fields, i.e. Gaussian fields whose covariance operator is given by the inverse fractional Laplacian $(-\Delta)^{-s}$ (where, in particular, we include the case $s >1$). We define a lattice discretization of these fields and show that their scaling limits -- with respect to the optimal Besov space topology (up to an endpoint case) -- are the original continuous fields. As a byproduct, in dimension $d<2s$, we prove the convergence in distribution of the maximum of the fields. A key tool in the proof is a sharp error estimate for the natural finite difference scheme for $(-\Delta)^s$ under minimal regularity assumptions, which is also of independent interest.
翻译:这项工作涉及分数高斯域, 即高斯域, 其共性操作员由反数拉普拉西亚元(-\ Delta) ⁇ - s} 美元( 其中我们特别包括案件 $ > 1 美元) 提供。 我们定义了这些域的细数分解, 并表明它们相对于最佳贝索夫空间地形学( 到终点 ) 的缩放限制是原始连续字段。 作为副产品, 在维度 < 2 美元中, 我们证明了字段最大分布的趋同性。 证据中的一个关键工具是在最低常规假设下对自然定值差( $-\ Delta) $ 的精确误差估计, 这也是独立的假设 。