The SUBNET neural network architecture has been developed to identify nonlinear state-space models from input-output data. To achieve this, it combines the rolled-out nonlinear state-space equations and a state encoder function, both parameterised as neural networks The encoder function is introduced to reconstruct the current state from past input-output data. Hence, it enables the forward simulation of the rolled-out state-space model. While this approach has shown to provide high-accuracy and consistent model estimation, its convergence can be significantly improved by efficient initialization of the training process. This paper focuses on such an initialisation of the subspace encoder approach using the Best Linear Approximation (BLA). Using the BLA provided state-space matrices and its associated reconstructability map, both the state-transition part of the network and the encoder are initialized. The performance of the improved initialisation scheme is evaluated on a Wiener-Hammerstein simulation example and a benchmark dataset. The results show that for a weakly nonlinear system, the proposed initialisation based on the linear reconstructability map results in a faster convergence and a better model quality.
翻译:为了从输入输出数据中识别非线性状态空间模型,提出了SUBNET神经网络架构。它将滚动的非线性状态空间方程和状态编码器函数结合起来,两者都被参数化为神经网络。引入编码器函数是为了从过去的输入输出数据中重构出当前状态。因此,它使得滚动的状态空间模型能够进行前向仿真。尽管该方法已被证明提供了高精度和一致的模型估计,但其收敛可以通过有效的训练过程初始化显著提高。本文重点介绍了利用最佳线性近似(BLA)进行子空间编码器方法初始化的方法。利用BLA提供的状态空间矩阵及其相关的可重构图,同时对网络的状态转移部分和编码器进行初始化。改进的初始化方案在Wiener-Hammerstein仿真示例和基准数据集中进行了评估。结果表明,对于弱非线性系统,基于线性可重构图的提议初始化方法结果更快地收敛且模型质量更好。