We develop novel theory and algorithms for computing approximate solution to $Ax=b$, or to $A^TAx=A^Tb$, where $A$ is an $m \times n$ real matrix of arbitrary rank. First, we describe the {\it Triangle Algorithm} (TA), where given an ellipsoid $E_{A,\rho}=\{Ax: \Vert x \Vert \leq \rho\}$, in each iteration it either computes successively improving approximation $b_k=Ax_k \in E_{A,\rho}$, or proves $b \not \in E_{A, \rho}$. We then extend TA for computing an approximate solution or minimum-norm solution. Next, we develop a dynamic version of TA, the {\it Centering Triangle Algorithm} (CTA), generating residuals $r_k=b - Ax_k$ via iterations of the simple formula, $F_1(r)=r-(r^THr/r^TH^2r)Hr$, where $H=A$ when $A$ is symmetric PSD, otherwise $H=AA^T$ but need not be computed explicitly. More generally, CTA extends to a family of iteration function, $F_t( r)$, $t=1, \dots, m$ satisfying: On the one hand, given $t \leq m$ and $r_0=b-Ax_0$, where $x_0=A^Tw_0$ with $w_0 \in \mathbb{R}^m$ arbitrary, for all $k \geq 1$, $r_k=F_t(r_{k-1})=b-Ax_k$ and $A^Tr_k$ converges to zero. Algorithmically, if $H$ is invertible with condition number $\kappa$, in $k=O( (\kappa/t) \ln \varepsilon^{-1})$ iterations $\Vert r_k \Vert \leq \varepsilon$. If $H$ is singular with $\kappa^+$ the ratio of its largest to smallest positive eigenvalues, in $k =O(\kappa^+/t\varepsilon)$ iterations either $\Vert r_k \Vert \leq \varepsilon$ or $\Vert A^T r_k\Vert= O(\sqrt{\varepsilon})$. If $N$ is the number of nonzero entries of $A$, each iteration take $O(Nt+t^3)$ operations. On the other hand, given $r_0=b-Ax_0$, suppose its minimal polynomial with respect to $H$ has degree $s$. Then $Ax=b$ is solvable if and only if $F_{s}(r_0)=0$. Moreover, exclusively $A^TAx=A^Tb$ is solvable, if and only if $F_{s}(r_0) \not= 0$ but $A^T F_s(r_0)=0$. Additionally, $\{F_t(r_0)\}_{t=1}^s$ is computable in $O(Ns+s^3)$ operations.
翻译:我们开发了一种计算 $Ax=b$ 或 $A^TAx=A^Tb$ 的近似解的新理论和算法,其中 $A$ 是任意秩的 $m \times n$ 实矩阵。首先,我们描述了“三角形算法”(TA),其中给定一个椭球体 $E_{A, \rho} = \{Ax: \Vert x \Vert \leq \rho\}$,在每次迭代中,它要么计算连续改进的近似解 $b_k=Ax_k\in E_{A, \rho}$,要么证明 $b\notin E_{A, \rho}$。然后,我们扩展了 TA 以计算近似解或最小范数解。接下来,我们开发了一个动态版本的 TA,即“居中三角形算法”(CTA),通过迭代简单的公式 $F_1(r)=r - (r^THr/r^TH^2r)Hr$ 生成残差 $r_k=b - Ax_k$,其中当 $A$ 对称且半正定时,$H=A$,否则 $H=AA^T$,但无需显式计算。更一般地,CTA 扩展到迭代函数族 $F_t(r)$,$t=1,\dots,m$,满足:一方面,给定 $t\leq m$ 和 $r_0=b-Ax_0$,其中 $x_0=A^Tw_0$,$w_0\in\mathbb{R}^m$ 任意,对于所有 $k \geq 1$,$r_k=F_t(r_{k-1})=b-Ax_k$,且 $A^Tr_k$ 收敛于零。如果 $H$ 可逆,其条件数为 $\kappa$,则在 $k=O((\kappa/t)\ln \varepsilon^{-1})$ 次迭代中,$\Vert r_k \Vert \leq \varepsilon$。如果 $H$ 是奇异的,其最大和最小正特征值之比为 $\kappa^+$,则在 $k=O(\kappa^+/t\varepsilon)$ 次迭代中,要么 $\Vert r_k \Vert \leq \varepsilon$,要么 $\Vert A^Tr_k\Vert=O(\sqrt{\varepsilon})$。如果 $A$ 的非零元素数为 $N$,则每次迭代需要 $O(Nt+t^3)$ 次运算。另一方面,给定 $r_0=b-Ax_0$,假设它相对于 $H$ 的最小多项式的次数为 $s$。那么当且仅当 $F_s(r_0)=0$ 时,$Ax=b$ 有解。此外,如果 $F_s(r_0)\neq 0$ 但是 $A^T F_s(r_0)= 0$,则独占 $A^TAx=A^Tb$ 有解。此外,$\{F_t(r_0)\}_{t=1}^s$ 可以在 $O(Ns+s^3)$ 次运算中计算。