Gabor functions have wide-spread applications in image processing and computer vision. In this paper, we prove that 2D Gabor functions are translation-invariant positive-definite kernels and propose a novel formulation for the problem of image representation with Gabor functions based on infinite kernel learning regression. Using this formulation, we obtain a support vector expansion of an image based on a mixture of Gabor functions. The problem with this representation is that all Gabor functions are present at all support vector pixels. Applying LASSO to this support vector expansion, we obtain a sparse representation in which each Gabor function is positioned at a very small set of pixels. As an application, we introduce a method for learning a dataset-specific set of Gabor filters that can be used subsequently for feature extraction. Our experiments show that use of the learned Gabor filters improves the recognition accuracy of a recently introduced face recognition algorithm.
翻译:Gabor 函数在图像处理和计算机视觉中具有广泛的应用。 在本文中, 我们证明 2D Gabor 函数是翻译异同正- 无限内核, 并基于无限内核学习回归, 为 Gabor 函数的图像表达问题提出新的配方 。 使用这种配方, 我们获得基于 Gabor 函数混合的图像支持矢量扩张。 这个配方的问题是所有支持矢量像素中都存在所有 Gabor 函数。 将 LASO 应用到支持矢量扩张中, 我们获得一个稀有的表示, 每个 Gabor 函数都位于一个非常小的像素组中。 作为应用程序, 我们引入了一种方法, 学习一套特定数据集的 Gabor 过滤器, 以后可用于特性提取。 我们的实验显示, 使用所学的 Gabor 过滤器可以提高最近引入的面部识别算法的识别精度。