Ecological policies that balance human development with conservation must consider cost-effectiveness and local impacts when identifying optimal policy scenarios that maximize outcomes within limited budgets is essential. This study employs the Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS), an Agent-Based Model (ABM) designed for simulating small-scale Coupled Human and Nature Systems (CHANS), and analyzes the cost-effectiveness of two major conversation programs: Grain-to-Green (G2G) and Firewood-to-Electricity (F2E) in terms of financial budget, habitat conservation performance, and local economic impacts with the example of China's Wolong National Reserve, a worldwide hot spot for flagship species conservation. The findings are as follows: (1) The G2G program achieves optimal financial efficiency at approximately 500 CNY/Mu, with diminishing returns observed beyond 1000 CNY/Mu; (2) For the F2E program, the most fiscally cost-efficient option arises when the subsidized electricity price is at 0.4-0.5 CNY/kWh, while further reductions of the prices to below 0.1 CNY/kWh result in a diminishing cost-benefit ratio; (3) Comprehensive cost-efficiency analysis reveals no significant link between financial burden and carbon emissions, but a positive correlation with habitat quality and an inverted U-shaped relationship with total economic income; (4) Pareto analysis identifies 18 optimal dual-policy combinations for balancing carbon footprint, habitat quality, and gross financial benefits; (5) Posterior Pareto optimization further refines the selection of a specific policy scheme for a given realistic scenario. The analytical framework of this paper helps policymakers design economically viable and environmentally sustainable policies, addressing global conservation challenges.
翻译:暂无翻译