Storytelling and narrative are fundamental to human experience, intertwined with our social and cultural engagement. As such, researchers have long attempted to create systems that can generate stories automatically. In recent years, powered by deep learning and massive data resources, automatic story generation has shown significant advances. However, considerable challenges, like the need for global coherence in generated stories, still hamper generative models from reaching the same storytelling ability as human narrators. To tackle these challenges, many studies seek to inject structured knowledge into the generation process, which is referred to as structured knowledge-enhanced story generation. Incorporating external knowledge can enhance the logical coherence among story events, achieve better knowledge grounding, and alleviate over-generalization and repetition problems in stories. This survey provides the latest and comprehensive review of this research field: (i) we present a systematical taxonomy regarding how existing methods integrate structured knowledge into story generation; (ii) we summarize involved story corpora, structured knowledge datasets, and evaluation metrics; (iii) we give multidimensional insights into the challenges of knowledge-enhanced story generation and cast light on promising directions for future study.


翻译:故事叙述和叙事是人类经验的基础,与我们的社交和文化参与紧密相连。因此,研究人员一直试图创建能够自动生成故事的系统。近年来,借助深度学习和海量数据资源,自动故事生成已经取得了显著进展。然而,仍然存在相当的挑战,比如在生成的故事中需要全局连贯性,限制了生成模型达到与人类叙述者相同的叙事能力。为了解决这些挑战,许多研究都试图将结构化知识注入到生成过程中,这被称为结构化知识增强故事生成。将外部知识整合到生成过程中可以增强故事事件之间的逻辑连贯性,实现更好的知识落地,并缓解故事中的过度泛化和重复问题。本综述提供了这一研究领域的最新和全面的回顾:(i)我们提供了现有方法如何将结构化知识整合到故事生成中的系统分类表;(ii)我们总结了涉及的故事语料库、结构化知识数据集和评估指标;(iii)我们提供了对知识增强故事生成挑战的多维度见解,并为未来的研究发展指明了有前途的方向。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
「知识增强预训练语言模型」最新研究综述
专知会员服务
60+阅读 · 2022年11月18日
知识增强预训练语言模型:全面综述
专知会员服务
89+阅读 · 2021年10月19日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
综述 | 事件抽取及推理 (下)
开放知识图谱
38+阅读 · 2019年1月14日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2021年10月1日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
92+阅读 · 2020年2月28日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
综述 | 事件抽取及推理 (下)
开放知识图谱
38+阅读 · 2019年1月14日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员