This study introduces an innovative approach that integrates community detection algorithms with Graph Neural Network (GNN) models to enhance link prediction in scientific literature networks. We specifically focus on the utilization of the Louvain community detection algorithm to uncover latent community structures within these networks, which are then incorporated into GNN architectures to predict potential links. Our methodology demonstrates the importance of understanding community dynamics in complex networks and leverages the strengths of both community detection and GNNs to improve predictive accuracy. Through extensive experiments on bipartite graphs representing scientific collaborations and citations, our approach not only highlights the synergy between community detection and GNNs but also addresses some of the prevalent challenges in link prediction, such as scalability and resolution limits. The results suggest that incorporating community-level information can significantly enhance the performance of GNNs in link prediction tasks. This work contributes to the evolving field of network science by offering a novel perspective on integrating advanced machine learning techniques with traditional network analysis methods to better understand and predict the intricate patterns of scientific collaborations.
翻译:暂无翻译