Image inpainting seeks a semantically consistent way to recover the corrupted image in the light of its unmasked content. Previous approaches usually reuse the well-trained GAN as effective prior to generate realistic patches for missing holes with GAN inversion. Nevertheless, the ignorance of a hard constraint in these algorithms may yield the gap between GAN inversion and image inpainting. Addressing this problem, in this paper, we devise a novel GAN inversion model for image inpainting, dubbed InvertFill, mainly consisting of an encoder with a pre-modulation module and a GAN generator with F&W+ latent space. Within the encoder, the pre-modulation network leverages multi-scale structures to encode more discriminative semantics into style vectors. In order to bridge the gap between GAN inversion and image inpainting, F&W+ latent space is proposed to eliminate glaring color discrepancy and semantic inconsistency. To reconstruct faithful and photorealistic images, a simple yet effective Soft-update Mean Latent module is designed to capture more diverse in-domain patterns that synthesize high-fidelity textures for large corruptions. Comprehensive experiments on four challenging datasets, including Places2, CelebA-HQ, MetFaces, and Scenery, demonstrate that our InvertFill outperforms the advanced approaches qualitatively and quantitatively and supports the completion of out-of-domain images well.
翻译:映射内映像映射中, 想要找到一种符合语义的一致方法, 来恢复未涂色内容的失色图像。 以前的方法通常在生成对 GAN 反转的缺失孔的切合实际的补丁之前, 将训练有素的GAN 重新使用GAN 有效。 然而, 这些算法中对于硬性约束的无知可能导致GAN 反向和图像涂漆之间出现差异。 解决这个问题, 我们在本文件中设计了一个新的 GAN 定量映射模型, 被称作 Inververt Finll, 主要由带有预调制模块的编码器和带有 F&W+ 潜藏空间的 GAN 生成器组成。 在编码内, 预调制网络利用多尺度结构将更具歧视性的语义输入到风格矢量中。 为了缩小 GAN 翻版和图像在涂图中的差距, F&W+ 隐含空间建议消除明显的色彩差异和语义不一致。 要重建忠实和光真真性图像, 一个简单而有效的 Soft- update Slodferent lient 生成模块, 一个简单而有效的 Soft- plifate- relifate- relifate- relist relist