This paper presents the contribution of the Data Science Kitchen at GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. The task aims at extending the identification of offensive language, by including additional subtasks that identify comments which should be prioritized for fact-checking by moderators and community managers. Our contribution focuses on a feature-engineering approach with a conventional classification backend. We combine semantic and writing style embeddings derived from pre-trained deep neural networks with additional numerical features, specifically designed for this task. Classifier ensembles are used to derive predictions for each subtask via a majority voting scheme. Our best submission achieved macro-averaged F1-scores of 66.8\%,\,69.9\% and 72.5\% for the identification of toxic, engaging, and fact-claiming comments.
翻译:暂无翻译