项目名称: PEDOT:PSS薄膜的光电性能提升、机理研究及其在第三代太阳能电池中的应用

项目编号: No.61504015

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 孙宽

作者单位: 重庆大学

项目金额: 20万元

中文摘要: 柔性的透明电极在现代光学电子元件中扮演着举足轻重的角色。聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)具备良好的成膜性、透光性和柔性,很有潜力成为下一代透明电极材料。但是PEDOT:PSS目前存在电导率低的问题。本项目拟对PEDOT:PSS薄膜进行溶液处理,通过完全去除薄膜中多余的PSS绝缘组分,力争揭示PEDOT:PSS薄膜的极限电导率。进而通过金属纳米材料掺杂,利用其高导电率和表面等离子共振效应,进一步提升PEDOT:PSS薄膜的光电性能。项目还将对基底进行物理处理或化学改性,解决PEDOT:PSS薄膜与基底的附着力低的问题。项目拟对不同掺杂材料、溶液浓度、处理温度等实验条件对电导率的影响进行研究;进而对薄膜的结构、PSS组分分布、光电特性进行表征,了解其微观形貌并提出导电机制;并最终将其作为柔性透明电极运用在第三代太阳能电池。

中文关键词: 透明导电薄膜;柔性衬底;光透过率;电导率;作用机理

英文摘要: Flexible transparent electrode plays an indispensible role in modern optoelectronic devices. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) exhibits excellent film-forming properties, transparency and flexibility, thus is potentially to become the next-generation transparent electrode material. However, PEDOT:PSS currently suffers from low electrical conductivity. The project aims to reveal the conductivity limit of PEDOT: PSS thin films through solution treatment, which hopefully could completely remove the excess insulating PSS component in the film. Next, through doping with metal nano-materials, the optical and electrical properties of the PEDOT:PSS film will be further enhanced due to the intrinsically high conductivity and surface Plasmon effect of these metal nano-structures. Furthermore, substrates will undergo physical or chemical treatment to solve the problem of poor adhesion between PEDOT:PSS film and the substrate. The project will study the effects of different dopant materials, solution concentration, treatment temperature and other experimental conditions on the conductivity; then characterize the film structure, PSS distribution as well as optical and electrical properties of treated PEDOT:PSS films, thus understand the microstructure and propose electrical conduction mechanism; and ultimately, explore its potential application as flexible transparent electrodes in third generation solar cells.

英文关键词: transparent conducting thin film;flexible substrate;transmittance;conductivity;working mechanism

成为VIP会员查看完整内容
0

相关内容

达观智能制造知识图谱平台电力能源行业应用方案
专知会员服务
46+阅读 · 2022年4月13日
中国信通院《5G应用创新发展白皮书》
专知会员服务
30+阅读 · 2022年3月9日
WWW2022 | 迷途知返:分布迁移下的图神经网络自训练方法
专知会员服务
16+阅读 · 2022年2月19日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
43+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
中国能源体系碳中和路线图,254页pdf
专知
1+阅读 · 2022年3月24日
vivo S12 Pro 体验丨联发科天玑的影像实力如何?
ZEALER订阅号
0+阅读 · 2022年1月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2022年1月11日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关VIP内容
达观智能制造知识图谱平台电力能源行业应用方案
专知会员服务
46+阅读 · 2022年4月13日
中国信通院《5G应用创新发展白皮书》
专知会员服务
30+阅读 · 2022年3月9日
WWW2022 | 迷途知返:分布迁移下的图神经网络自训练方法
专知会员服务
16+阅读 · 2022年2月19日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
43+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
相关资讯
中国能源体系碳中和路线图,254页pdf
专知
1+阅读 · 2022年3月24日
vivo S12 Pro 体验丨联发科天玑的影像实力如何?
ZEALER订阅号
0+阅读 · 2022年1月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员