Natural Language Processing (NLP) techniques have been increasingly integrated into clinical projects to advance clinical decision-making and improve patient outcomes. Such projects benefit from interdisciplinary team collaborations. This paper explores challenges and opportunities using two clinical NLP projects as case studies, where speech-language pathologists (SLPs) and NLP researchers jointly developed technology-based systems to improve clinical workflow. Through semi-structured interviews with five SLPs and four NLP researchers, we collected collaboration practices and challenges. Using Activity Theory as an analytical framework, we examined collaborative activities, challenges, and strategies to bridge interdisciplinary gaps. Our findings revealed significant knowledge boundaries and terminological barriers between SLPs and NLP researchers when both groups relied on clinical data as boundary objects to facilitate collaboration, although this approach has limitations. We highlight the potential opportunities of AI technologies as knowledge brokers to overcome interdisciplinary collaboration challenges.
翻译:暂无翻译