Dillon observed that an APN function $F$ over $\mathbb{F}_2^{n}$ with $n$ greater than $2$ must satisfy the condition $\{F(x) + F(y) + F(z) + F(x + y + z) \,:\, x,y,z \in\mathbb{F}_2^n\}= \mathbb{F}_2^n$. Recently, Taniguchi (2023) generalized this condition to functions defined from $\mathbb{F}_2^n$ to $\mathbb{F}_2^m$, with $m>n$, calling it the D-property. Taniguchi gave some characterizations of APN functions satisfying the D-property and provided some families of APN functions from $\mathbb{F}_2^n$ to $\mathbb{F}_2^{n+1}$ satisfying this property. In this work, we further study the D-property for $(n,m)$-functions with $m\ge n$. We give some combinatorial bounds on the dimension $m$ for the existence of such functions. Then, we characterize the D-property in terms of the Walsh transform and for quadratic functions we give a characterization of this property in terms of the ANF. We also give a simplification on checking the D-property for quadratic functions, which permits to extend some of the APN families provided by Taniguchi. We further focus on the class of the plateaued functions, providing conditions for the D-property.
翻译:Dillon 观察到, 最近, Taniguchi (2023年) 将这一条件推广到由$\mathbb{F2}}美元至$\mathbb{F2}美元定义的功能, 条件必须满足$F(x)+F(y)+F(z)+F(x)+F(x)+F(x)+F(z)+F(x)+F(x)+F(z)+F(x)+F(x)+F(x)+F(z)), :\, x,y, y,z(mathb{F)2},z(f)b{F2}{F2}}}}。 最近, 将这一条件推广到由$\mathbb{F2}F2<unk> +1} 定义的函数, 从$( F) 美元到$(F2}F2} 美元到$(美元) 美元, 美元(F2} 美元) 美元, 美元(m) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。 塔吉吉吉 函数的功能的功能。</s>