Many neurological diseases are characterized by gradual deterioration of brain structure and function. Large longitudinal MRI datasets have revealed such deterioration, in part, by applying machine and deep learning to predict diagnosis. A popular approach is to apply Convolutional Neural Networks (CNN) to extract informative features from each visit of the longitudinal MRI and then use those features to classify each visit via Recurrent Neural Networks (RNNs). Such modeling neglects the progressive nature of the disease, which may result in clinically implausible classifications across visits. To avoid this issue, we propose to combine features across visits by coupling feature extraction with a novel longitudinal pooling layer and enforce consistency of the classification across visits in line with disease progression. We evaluate the proposed method on the longitudinal structural MRIs from three neuroimaging datasets: Alzheimer's Disease Neuroimaging Initiative (ADNI, N=404), a dataset composed of 274 normal controls and 329 patients with Alcohol Use Disorder (AUD), and 255 youths from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). In all three experiments our method is superior to other widely used approaches for longitudinal classification thus making a unique contribution towards more accurate tracking of the impact of conditions on the brain. The code is available at https://github.com/ouyangjiahong/longitudinal-pooling.
翻译:许多神经疾病的特点是大脑结构和功能逐渐退化。大型纵向磁共振数据集通过应用机器和深层学习来预测诊断,部分通过应用进化神经网络(CNN)来从纵向磁共振每次访问中提取信息特征,然后利用这些特征通过经常性神经网络对每次访问进行分类。这种模型忽视了该疾病的渐进性质,这可能导致临床上无法对不同访问进行分级。为了避免这一问题,我们提议通过将特征提取与新型纵向集合层相结合,并按疾病演变情况对不同访问进行分类。我们采用流行的方法是采用进化神经神经网络每次访问中关于纵向结构MINGI的拟议方法(ADNI,N=404),由274个正常控制和329个酗酒患者组成的数据集(AUD),以及255个来自全国酒精和酒精中毒问题联合会(NCANDA)的青少年。在进行所有三项关于对跨访问进行跨访问的分类时,根据病情进展,对跨访问的分类方法进行统一。我们从三个神经成型数据集(ADN=404,一个由274正常的正常的正常控制和酒精使用不调的病人组成者组成的系统/神经结构分析方法,对长期进行更精确的系统进行更精确的计算。