We develop a Bayesian nonparametric autoregressive model applied to flexibly estimate general transition densities exhibiting nonlinear lag dependence. Our approach is related to Bayesian density regression using Dirichlet process mixtures, with the Markovian likelihood defined through the conditional distribution obtained from the mixture. This results in a Bayesian nonparametric extension of a mixtures-of-experts model formulation. We address computational challenges to posterior sampling that arise from the Markovian structure in the likelihood. The base model is illustrated with synthetic data from a classical model for population dynamics, as well as a series of waiting times between eruptions of Old Faithful Geyser. We study inferences available through the base model before extending the methodology to include automatic relevance detection among a pre-specified set of lags. Inference for global and local lag selection is explored with additional simulation studies, and the methods are illustrated through analysis of an annual time series of pink salmon abundance in a stream in Alaska. We further explore and compare transition density estimation performance for alternative configurations of the proposed model.
翻译:我们开发了一种巴耶斯非参数自动递减模型,用于灵活估计显示非线性延滞依赖性的一般过渡密度。我们的方法与使用Drichlet工艺混合物的巴耶斯密度回归有关,而Markovian的可能性则通过该混合物的有条件分布来界定。这导致一种专家混合物模型的配方在巴耶斯的非参数扩展。我们处理可能从马科维亚结构中产生的后方取样的计算挑战。基准模型用人口动态古典模型的合成数据以及旧信仰盖瑟火山爆发之间的一系列等待时间来说明。我们研究通过基准模型获得的推论,然后扩大方法,将预先确定的一组滞后情况包括自动检测。通过进一步的模拟研究来探讨全球和当地时间滞后选择的推论,并通过分析阿拉斯加河粉红鲑丰度的年度时间序列来说明方法。我们进一步探讨和比较拟议模型的替代配置的过渡密度估计绩效。