To ensure the reliable operation of speech systems across diverse environments, noise addition methods have emerged as the prevailing solution. However, existing methods offer limited coverage of real-world noisy scenes and depend on pre-existing scene-based information and noise. This paper presents prompt-based Dynamic Generative Scene-based Noise Addition (DGSNA), a novel noise addition methodology that integrates Dynamic Generation of Scene-based Information (DGSI) with Scene-based Noise Addition for Speech (SNAS). This integration facilitates automated scene-based noise addition by transforming clean speech into various noise environments, thereby providing a more comprehensive and realistic simulation of diverse noise conditions. Experimental results demonstrate that DGSNA significantly enhances the robustness of speech recognition and keyword spotting models across various noise conditions, achieving a relative improvement of up to 11.21%. Furthermore, DGSNA can be effectively integrated with other noise addition methods to enhance performance. Our implementation and demonstrations are available at https://dgsna.github.io.
翻译:暂无翻译