The primary goal of this paper is to introduce a novel frailty model based on the weighted Lindley (WL) distribution for modeling clustered survival data. We study the statistical properties of the proposed model. In particular, the amount of unobserved heterogeneity is directly parameterized on the variance of the frailty distribution such as gamma and inverse Gaussian frailty models. Parametric and semiparametric versions of the WL frailty model are studied. A simple expectation-maximization (EM) algorithm is proposed for parameter estimation. Simulation studies are conducted to evaluate its finite sample performance. Finally, we apply the proposed model to a real data set to analyze times after surgery in patients diagnosed with colorectal cancer and compare our results with classical frailty models carried out in this application, which shows the superiority of the proposed model. We implement an R package that includes estimation for fitting the proposed model based on the EM-algorithm.
翻译:本文的首要目标是采用基于Lindley(WL)加权分布的新型脆弱模型,用于模拟集群生存数据的模型。我们研究了拟议模型的统计特性。特别是,未观察到的异质性量,直接根据如伽马和高斯的反面脆弱模型等脆弱分布的差异进行参数参数化。研究了WL脆弱模型的参数和半对称版本。提出了用于参数估计的简单预期-最大化算法。进行了模拟研究,以评价其有限的样本性能。最后,我们将拟议模型应用于一个真实数据组,用于分析被诊断患有直肠癌的病人手术后的时间,并将我们的结果与在这一应用中进行的典型脆弱模型进行比较,该模型显示了拟议模型的优越性。我们实施了一个R包,其中包括根据EM-algorithm对拟议模型的安装进行估计。