Given a sequence $X=(X_1,X_2,\ldots)$ of random observations, a Bayesian forecaster aims to predict $X_{n+1}$ based on $(X_1,\ldots,X_n)$ for each $n\ge 0$. To this end, she only needs to select a collection $\sigma=(\sigma_0,\sigma_1,\ldots)$, called "strategy" in what follows, where $\sigma_0(\cdot)=P(X_1\in\cdot)$ is the marginal distribution of $X_1$ and $\sigma_n(\cdot)=P(X_{n+1}\in\cdot\mid X_1,\ldots,X_n)$ the $n$-th predictive distribution. Because of the Ionescu-Tulcea theorem, $\sigma$ can be assigned directly, without passing through the usual prior/posterior scheme. One main advantage is that no prior probability is to be selected. In a nutshell, this is the non-standard approach to Bayesian predictive inference. A concise review of the latter is provided in this paper. We try to put such an approach in the right framework, to make clear a few misunderstandings, and to provide a unifying view. Some recent results are discussed as well. In addition, some new strategies are introduced and the corresponding distribution of the data sequence $X$ is determined. The strategies concern generalized Polya urns, random change points, covariates and stationary sequences.
翻译:根据一个序列 $X= (X_ 1,X_ 2,\ldots) 随机观测的 美元, 一个贝叶斯预报员的目标是根据美元( X_ 1,\ldots,X_ n) 美元来预测$X+1美元。 为此, 她只需要选择一个 $\ sgma= (\ sgma_ 0,\ sgma_ 1,\ldots) $, 称为“ 战略”, 其后续内容中称为“ 战略”, 其中$( X_ 1\ in\ cdot) = P( X_ 1\ n+n+1) +1美元 美元 美元 美元, 以美元为基础计算每美元 美元 美元 。 对于这个序列, 只需选择一个收藏 $gmamagmas=( max_ 1, 0. 0) 美元 的预测分布。 由于 Ionescu- Turceem 理论, $\ gmagmaget, 也可以直接指定 $( $), 而无需通过 通常的 / posterriate proate proate scheal plan.