We consider the two-dimensional high-frequency plane wave scattering problem in the exterior of a finite collection of disjoint, compact, smooth, strictly convex obstacles with Neumann boundary conditions. Using integral equation formulations, we determine the H\"{o}rmander classes and derive high-frequency asymptotic expansions of the total fields corresponding to multiple scattering iterations on the boundaries of the scattering obstacles. These asymptotic expansions are used to obtain sharp wavenumber dependent estimates on the derivatives of multiple scattering total fields which, in turn, allow for the optimal design and numerical analysis of Galerkin boundary element methods for the efficient (frequency independent) approximation of sound hard multiple scattering returns. Numerical experiments supporting the validity of these expansions are presented.
翻译:我们认为,在有限地收集的与Neumann边界条件脱节、紧凑、平滑、严格封闭的障碍物的外部,存在二维高频波散射问题。我们使用整体方程配方,确定H\"{o}rmander类,并得出与散射障碍物边界多处多处分散迭代相对应的总字段的高频无症状扩展。这些无源波数扩张用于获取对多个散射总字段衍生物的急剧波数估计,从而能够对Galerkin边界要素方法进行最佳设计和数字分析,以便有效(频率独立)近似声音重度多处散射返回。提出了支持这些扩展有效性的数值实验。