We describe the orchestration of a decentralized swarm of rotary-wing UAV-relays, augmenting the coverage and service capabilities of a terrestrial base station. Our goal is to minimize the time-average service latencies involved in handling transmission requests from ground users under Poisson arrivals, subject to an average UAV power constraint. Equipped with rate adaptation to efficiently leverage air-to-ground channel stochastics, we first derive the optimal control policy for a single relay via a semi-Markov decision process formulation, with competitive swarm optimization for UAV trajectory design. Accordingly, we detail a multiscale decomposition of this construction: outer decisions on radial wait velocities and end positions optimize the expected long-term delay-power trade-off; consequently, inner decisions on angular wait velocities, service schedules, and UAV trajectories greedily minimize the instantaneous delay-power costs. Next, generalizing to UAV swarms via replication and consensus-driven command-and-control, this policy is embedded with spread maximization and conflict resolution heuristics. We demonstrate that our framework offers superior performance vis-\`a-vis average service latencies and average per-UAV power consumption: 11x faster data payload delivery relative to static UAV-relay deployments and 2x faster than a deep-Q network solution; remarkably, one relay with our scheme outclasses three relays under a joint successive convex approximation policy by 62%.
翻译:我们描述的是旋转翼无人驾驶飞行器交接的分散式轮流群的调控,这增强了地面基地站的覆盖范围和服务能力。我们的目标是尽量减少波索逊抵达时地面用户在处理地面用户传输请求方面的平均服务延误时间,但需遵守平均无人驾驶飞行器的电力限制。我们首先通过半马尔科夫决策程序的配置,通过对无人驾驶飞行器轨迹设计进行竞争性暖流优化,为单一中继系统制定最佳控制政策。因此,我们详细说明了这一建筑的多重拆解:关于辐射等待速度和终端位置的外部决定优化了预期的长期延迟电力交易;因此,对角等待速度、服务时间表和无人驾驶飞行器轨迹的内部决定,贪婪地将即时延迟电力成本降到最低。接下来,我们通过复制和协商一致驱动的指挥和控制,将这一政策普遍化为UAVSwarms,这一政策嵌入了深度最大化和冲突解决方案;关于辐射等待的快速等待速度和最终位置的外部决定优化了预期的长期延迟电力交易;因此,我们的联合框架提供了高水平的运行率,比US-VX的连续连续三期中继系统交付快。我们的平均服务计划,比U中继中继系统提供了高水平数据。