The most relevant problems in discounted reinforcement learning involve estimating the mean of a function under the stationary distribution of a Markov reward process, such as the expected return in policy evaluation, or the policy gradient in policy optimization. In practice, these estimates are produced through a finite-horizon episodic sampling, which neglects the mixing properties of the Markov process. It is mostly unclear how this mismatch between the practical and the ideal setting affects the estimation, and the literature lacks a formal study on the pitfalls of episodic sampling, and how to do it optimally. In this paper, we present a minimax lower bound on the discounted mean estimation problem that explicitly connects the estimation error with the mixing properties of the Markov process and the discount factor. Then, we provide a statistical analysis on a set of notable estimators and the corresponding sampling procedures, which includes the finite-horizon estimators often used in practice. Crucially, we show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties w.r.t. the alternative estimators, as it matches the lower bound without requiring a careful tuning of the episode horizon.


翻译:最相关的折扣强化学习问题涉及在马尔可夫奖励过程的平稳分布下估计函数的均值,例如策略评估中的预期回报或策略优化中的策略梯度。在实践中,这些估计是通过有限时间段的一次性采样产生的,但这种方法忽略了马尔可夫过程的混合性质。目前尚不清楚这种实践和理想设置之间的不匹配如何影响估计,而且文献缺乏关于如何最优地进行一次性采样的正式研究和因此带来的风险。在本文中,我们提出了一个折扣均值估计问题的极小最大下限,明确将估计误差与马尔可夫过程的混合特性和折扣因子联系起来。然后,我们提出了针对一些重要估计量以及相应的采样程序的统计分析,其中包括实践中经常使用的有限时间段估计器。关键是,我们展示了直接从马尔可夫过程的折扣核进行抽样来估计平均值具有引人注目的统计性质,这与其他估计器匹配并且不需要仔细调整一次采样的持续时间。

0
下载
关闭预览

相关内容

WWW 2023|快手:通过强化学习提升用户留存
专知会员服务
15+阅读 · 2023年4月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
11+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
11+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员