Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, decoding, and candidate ranking in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.
翻译:生成不同内容的段落在许多应用中很重要。现有的一代模式由于固定的左对右句顺序,从同质背景中产生类似内容。我们的想法是调整句号顺序,以改善多句句段的内容多样性。我们提议了一个全新的PermGen框架,目的是尽可能扩大所有可能的句号中产出段落分配的预期日志相似性。 PermGen使用等级定位嵌入和设计新的培训程序、解码和变句一代中候选人的排序。对三段生成基准的实验显示,PermGen生成了比现有模型质量更高的不同产出。