In this paper, we study the connection between entropic optimal transport and entropy power inequality (EPI). First, we prove an HWI-type inequality making use of the infinitesimal displacement convexity of optimal transport map. Second, we derive two Talagrand-type inequalities using the saturation of EPI that corresponds to a numerical term in our expression. We evaluate for a wide variety of distributions this term whereas for Gaussian and i.i.d. Cauchy distributions this term is found in explicit form. We show that our results extend previous results of Gaussian Talagrand inequality for Sinkhorn distance to the strongly log-concave case.
翻译:在本文中,我们研究了英特加最佳运输与英特加电力不平等之间的联系。首先,我们利用最佳运输图的极小迁移曲线,证明了HWI类型的不平等。第二,我们利用与我们表达的某个数字术语相对应的 EPI 饱和度,得出了两种Talagrand类型的不平等。我们对这一术语的分布进行了广泛的评估,而对于Gaussian 和 i.d. 来说,该术语的分布以明确的形式可见。我们表明,我们的结果将Gaussian Talagran 以往对Sinkhorn距离的不平等性结果扩大到了强烈的逻辑组合案例。