We study combinatorial inequalities for various classes of set systems: matroids, polymatroids, poset antimatroids, and interval greedoids. We prove log-concavity inequalities for counting certain weighted feasible words, which generalize and extend several previous results establishing Mason conjectures for the numbers of independent sets of matroids. Notably, we prove matching equality conditions for both earlier inequalities and our extensions. In contrast with much of the previous work, our proofs are combinatorial and employ nothing but linear algebra. We use the language formulation of greedoids which allows a linear algebraic setup, which in turn can be analyzed recursively. The underlying non-commutative nature of matrices associated with greedoids allows us to proceed beyond polymatroids and prove the equality conditions. As further application of our tools, we rederive both Stanley's inequality on the number of certain linear extensions, and its equality conditions, which we then also extend to the weighted case.
翻译:我们研究各种类型的固定系统的分类不平等:机器人、多机器人、表面抗甲状腺和间隔贪婪。我们证明在计算某些加权可行的单词时存在对数的对数差异的对数理解不平等,这些对数概括并扩展了先前的几项结果,这些结果为独立的数组机器人提供了梅森猜想。值得注意的是,我们证明以前不平等和我们的扩展都符合平等条件。与以前的许多工作相比,我们的证据是组合性的,只使用线性代数。我们使用贪婪类语言的配方,允许线性代数设置,这反过来可以循环分析。与贪婪相关的矩阵的基本非混合性质使我们能够超越多类机器人,并证明平等条件。作为我们工具的进一步应用,我们重新研究斯坦利在某些线性扩展数量及其平等条件上的不平等,我们随后也将其扩大到加权情况。