The task of organizing a shuffled set of sentences into a coherent text is important in NLP and has been used to evaluate a machine's understanding of causal and temporal relations. We present Reorder-BART (RE-BART), a sentence ordering framework which leverages a pre-trained transformer-based model to identify a coherent order for a given set of shuffled sentences. We reformulate the task as a conditional text-to-marker generation setup where the input is a set of shuffled sentences with sentence-specific markers and output is a sequence of position markers of the ordered text. Our framework achieves the state-of-the-art performance across six datasets in Perfect Match Ratio (PMR) and Kendall's tau ($\tau$) metric. We perform evaluations in a zero-shot setting, showcasing that our model is able to generalize well across other datasets. We additionally perform a series of experiments to understand the functioning and explore the limitations of our framework.


翻译:将一组重置的句子组织成一套连贯的文本的任务在NLP中很重要,并被用来评价机器对因果关系和时间关系的理解。我们提出重置-BART(RE-BART),这是一个句子排序框架,它利用一个预先训练的变压器模型,为一组重置的句子确定一个一致的顺序。我们将此任务改写为有条件的文本到标记生成装置,其中输入的内容是一组带有特定句子标记的重置句子,产出是定购文本的定位标记序列。我们的框架在完美匹配比率(PMR)和Kendall Tau ($\tau$) 的六套数据集中实现了最先进的性能。我们在一个零点位置上进行评估,显示我们的模型能够将其他数据集广泛归纳。我们还进行了一系列实验,以了解框架的功能并探索其局限性。

0
下载
关闭预览

相关内容

知识增强的文本生成研究进展
专知会员服务
100+阅读 · 2021年3月6日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2019年9月26日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关VIP内容
知识增强的文本生成研究进展
专知会员服务
100+阅读 · 2021年3月6日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员