The task of organizing a shuffled set of sentences into a coherent text is important in NLP and has been used to evaluate a machine's understanding of causal and temporal relations. We present Reorder-BART (RE-BART), a sentence ordering framework which leverages a pre-trained transformer-based model to identify a coherent order for a given set of shuffled sentences. We reformulate the task as a conditional text-to-marker generation setup where the input is a set of shuffled sentences with sentence-specific markers and output is a sequence of position markers of the ordered text. Our framework achieves the state-of-the-art performance across six datasets in Perfect Match Ratio (PMR) and Kendall's tau ($\tau$) metric. We perform evaluations in a zero-shot setting, showcasing that our model is able to generalize well across other datasets. We additionally perform a series of experiments to understand the functioning and explore the limitations of our framework.
翻译:将一组重置的句子组织成一套连贯的文本的任务在NLP中很重要,并被用来评价机器对因果关系和时间关系的理解。我们提出重置-BART(RE-BART),这是一个句子排序框架,它利用一个预先训练的变压器模型,为一组重置的句子确定一个一致的顺序。我们将此任务改写为有条件的文本到标记生成装置,其中输入的内容是一组带有特定句子标记的重置句子,产出是定购文本的定位标记序列。我们的框架在完美匹配比率(PMR)和Kendall Tau ($\tau$) 的六套数据集中实现了最先进的性能。我们在一个零点位置上进行评估,显示我们的模型能够将其他数据集广泛归纳。我们还进行了一系列实验,以了解框架的功能并探索其局限性。