This paper studies the third-order characteristic of nonsingular discrete memoryless channels and the Gaussian channel with a maximal power constraint. The third-order term in our expansions employs a new quantity here called the \emph{channel skewness}, which affects the approximation accuracy more significantly as the error probability decreases. For the Gaussian channel, evaluating Shannon's (1959) random coding and sphere-packing bounds in the central limit theorem (CLT) regime enables exact computation of the channel skewness. For discrete memoryless channels, this work generalizes Moulin's (2017) bounds on the asymptotic expansion of the maximum achievable message set size for nonsingular channels from the CLT regime to include the moderate deviations (MD) regime, thereby refining Altu\u{g} and Wagner's (2014) MD result. For an example binary symmetric channel and most practically important $(n, \epsilon)$ pairs, including $n \in [100, 500]$ and $\epsilon \in [10^{-10}, 10^{-1}]$, an approximation up to the channel skewness is the most accurate among several expansions in the literature. A derivation of the third-order term in the type-II error exponent of binary hypothesis testing in the MD regime is also included; the resulting third-order term is similar to the channel skewness.
翻译:本文研究了非奇异离散无记忆信道和带有最大功率限制的高斯信道的第三级别特征。我们扩展中使用的第三级项引入了一个称为“信道偏度”的新量,随着误差概率的减小,这更显著地影响近似精度。 对于高斯信道,在中心极限定理(CLT)范围内评估香农(1959年)的随机编码和球装箱界限使得信道偏度的精确计算成为可能。对于离散无记忆信道,本文将Moulin(2017年)在非奇异信道的最大可实现信息集大小的渐近展开界限,从CLT范围推广到包括中等偏差(MD)范围,从而改进了Altuğ和Wagner(2014年)的MD结果。对于示例二元对称信道和大多数实际重要的$(n, \epsilon)$配对,包括$n \in [100, 500]$和$\epsilon \in [10^{-10}, 10^{-1}]$,在信道偏度精度的多个扩展中,最精确的近似。本文还包括了二元假设检验在MD区间中第二类误差指数的第三级项的推导;得到的第三级项类似于信道偏度。