Reconstructing the 3D geometry of an object from an image is a major challenge in computer vision. Recently introduced differentiable renderers can be leveraged to learn the 3D geometry of objects from 2D images, but those approaches require additional supervision to enable the renderer to produce an output that can be compared to the input image. This can be scene information or constraints such as object silhouettes, uniform backgrounds, material, texture, and lighting. In this paper, we propose an approach that enables a differentiable rendering-based learning of 3D objects from images with backgrounds without the need for silhouette supervision. Instead of trying to render an image close to the input, we propose an adversarial style-transfer and domain adaptation pipeline that allows to translate the input image domain to the rendered image domain. This allows us to directly compare between a translated image and the differentiable rendering of a 3D object reconstruction in order to train the 3D object reconstruction network. We show that the approach learns 3D geometry from images with backgrounds and provides a better performance than constrained methods for single-view 3D object reconstruction on this task.


翻译:从图像中重建对象的 3D 几何是计算机视觉中的一大挑战。 最近引入的可变转换器可以被利用来学习 2D 图像对象的 3D 几何, 但是这些方法需要额外的监督, 使转换器能够生成一个输出, 可以与输入图像相比。 这可以是场景信息或制约, 如对象环形、 统一背景、 材料、 纹理和照明。 在本文中, 我们提出一种方法, 使来自背景的图像的 3D 对象能够以不同的方式进行基于图像的翻版学习, 而不需要光学监督 。 我们不试图让图像接近输入, 而是提议一个对抗式样传输和域适应管道, 以便能够将输入图像域转换到已设定的图像域 。 这样可以让我们直接比较被翻译的图像和 3D 对象重建的可变转换结果, 以便训练 3D 对象重建网络 。 我们显示, 这种方法从有背景的图像中学习 3D 几何方法, 并且提供了比单视图 3D 3D 对象 重建任务对象的功能更好的表现方法 。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
12+阅读 · 2020年2月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
12+阅读 · 2020年2月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员