As satellite networks grow larger and begin to incorporate interplanetary communication, there is an increasing interest in the unsolved problem of how to approach PKI in these conditions. In this paper we explore the goals and requirements for implementing key management systems in satellite networks, focusing on megaconstellations and interplanetary networks. We design a set of standardized experiments which can be used to compare systems against one another for particular network topologies. Using these, we demonstrate that terrestrial PKI techniques are feasible in highly distributed interplanetary networks, showing that it is possible to configure PKI systems to achieve efficient low-latency connection establishment, and minimize the impact of attacks through effective revocations. We evaluate this by building the Deep Space Network Simulator (DSNS), a novel network simulator aimed at efficient simulation of large space networks. We run simulations evaluating connection establishment and key revocation under a wide range of PKI configurations. Finally, we propose and evaluate two additional configuration options: OCSP Hybrid, and the use of relay nodes as a firewall. Together these minimize the extent of the network an attacker can reach with a compromised key, and reduce the attacker's load on interplanetary relay links.
翻译:暂无翻译