One of the most computationally expensive steps of the low-rank ADI method for large-scale Lyapunov equations is the solution of a shifted linear system at each iteration. We propose the use of the extended Krylov subspace method for this task. In particular, we illustrate how a single approximation space can be constructed to solve all the shifted linear systems needed to achieve a prescribed accuracy in terms of Lyapunov residual norm. Moreover, we show how to fully merge the two iterative procedures in order to obtain a novel, efficient implementation of the low-rank ADI method, for an important class of equations. Many state-of-the-art algorithms for the shift computation can be easily incorporated into our new scheme, as well. Several numerical results illustrate the potential of our novel procedure when compared to an implementation of the low-rank ADI method based on sparse direct solvers for the shifted linear systems.
翻译:用于大型 Lyapunov 等式的低级 ADI 方法中最昂贵的计算步骤之一是在每次迭代时采用一个变换线性系统。 我们提议使用扩展 Krylov 子空间方法来完成这项任务。 特别是, 我们说明如何建造一个单一近似空间来解决所有变换线性系统,而这种系统需要达到规定的Lyapunov 剩余规范的准确性。 此外, 我们展示了如何将两个迭接程序完全合并,以便获得新颖的、有效的实施低级 ADI 方法, 用于重要的等式。 许多最先进的变换计算算法可以很容易地纳入我们的新方案, 以及若干数字结果表明,与执行基于变换线性系统稀疏的直接解算器的低级 ADI 方法相比,我们的新程序具有潜力。