This paper presents the Advanced Reasoning and Transformation Engine for Multi-Step Insight Synthesis in Data Analytics (ARTEMIS-DA), a novel framework designed to augment Large Language Models (LLMs) for solving complex, multi-step data analytics tasks. ARTEMIS-DA integrates three core components: the Planner, which dissects complex user queries into structured, sequential instructions encompassing data preprocessing, transformation, predictive modeling, and visualization; the Coder, which dynamically generates and executes Python code to implement these instructions; and the Grapher, which interprets generated visualizations to derive actionable insights. By orchestrating the collaboration between these components, ARTEMIS-DA effectively manages sophisticated analytical workflows involving advanced reasoning, multi-step transformations, and synthesis across diverse data modalities. The framework achieves state-of-the-art (SOTA) performance on benchmarks such as WikiTableQuestions and TabFact, demonstrating its ability to tackle intricate analytical tasks with precision and adaptability. By combining the reasoning capabilities of LLMs with automated code generation and execution and visual analysis, ARTEMIS-DA offers a robust, scalable solution for multi-step insight synthesis, addressing a wide range of challenges in data analytics.
翻译:暂无翻译