This paper studies computational methods for quasi-stationary distributions (QSDs). We first proposed a data-driven solver that solves Fokker-Planck equations for QSDs. Similar as the case of Fokker-Planck equations for invariant probability measures, we set up an optimization problem that minimizes the distance from a low-accuracy reference solution, under the constraint of satisfying the linear relation given by the discretized Fokker-Planck operator. Then we use coupling method to study the sensitivity of a QSD against either the change of boundary condition or the diffusion coefficient. The 1-Wasserstein distance between a QSD and the corresponding invariant probability measure can be quantitatively estimated. Some numerical results about both computation of QSDs and their sensitivity analysis are provided.
翻译:本文研究了准静止分布的计算方法。 我们首先提出了一个数据驱动求解器, 解决QSD的Fokker- Planck方程式。 和Fokker- Planck方程式一样, 我们设置了一个优化问题, 在满足离散的Fokker-Planck操作员给出的线性关系的制约下, 最大限度地减少与低准确度参考解决方案的距离。 然后我们使用混合方法, 研究QSD对边界条件或扩散系数的变化的敏感性。 QSD与相应的不变化概率计量之间的1- Wasserstein距离可以量化估算。 提供了计算QSD及其灵敏度分析的一些数字结果 。