We provide statistical analysis methods for samples of curves when the image but not the parametrisation of the curves is of interest. A parametrisation invariant analysis can be based on the elastic distance of the curves modulo warping, but existing methods have limitations in common realistic settings where curves are irregularly and potentially sparsely observed. We provide methods and algorithms to approximate the elastic distance for such curves via interpreting them as polygons. Moreover, we propose to use spline curves for modelling smooth or polygonal Fr\'echet means of open or closed curves with respect to the elastic distance and show identifiability of the spline model modulo warping. We illustrate the use of our methods for elastic mean and distance computation by application to two datasets. The first application clusters sparsely sampled GPS tracks based on the elastic distance and computes smooth means for each cluster to find new paths on Tempelhof field in Berlin. The second classifies irregularly sampled handwritten spirals of Parkinson's patients and controls based on the elastic distance to a mean spiral curve computed using our approach. All developed methods are implemented in the \texttt{R}-package \texttt{elasdics} and evaluated in simulations.


翻译:当图象感兴趣时,我们为曲线样本提供统计分析方法,如果图象感兴趣,而不是曲线的平衡,则提供曲线样本的统计分析方法。参数变异性分析可以基于曲线摩杜洛扭曲的弹性距离,但现有方法在共同的现实环境中有局限性,因为曲线不规则,而且可能很少观测。我们提供方法和算法,以通过将曲线解读成多边形来估计这些曲线的弹性距离。此外,我们提议使用样条曲线来模拟平滑或多边形Fr\'echet 的开放或封闭曲线的样条曲线,并显示样条模型摩杜洛扭曲的可辨性。我们用两种数据集来说明我们用于弹性平均平均平均和距离计算的方法。我们的第一个应用组以弹性距离为基础,为每个组群集寻找柏林Tempelholhof 字段的新路径的光滑滑度工具进行粗度取样。第二组将Parkinson病人的手写螺旋式螺旋图进行不定期分类,并显示螺旋式模型模型的可识别性, 利用正态的螺旋度方法来进行计算。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员